Properties

Label 4725.2.a.bt.1.4
Level $4725$
Weight $2$
Character 4725.1
Self dual yes
Analytic conductor $37.729$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4725,2,Mod(1,4725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4725.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4725 = 3^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4725.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,0,0,-4,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7293149551\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.28825\) of defining polynomial
Character \(\chi\) \(=\) 4725.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.28825 q^{2} +3.23607 q^{4} -1.00000 q^{7} +2.82843 q^{8} -0.874032 q^{11} -4.23607 q^{13} -2.28825 q^{14} +0.333851 q^{17} -4.47214 q^{19} -2.00000 q^{22} -0.874032 q^{23} -9.69316 q^{26} -3.23607 q^{28} -7.94510 q^{29} +6.70820 q^{31} -5.65685 q^{32} +0.763932 q^{34} -3.00000 q^{37} -10.2333 q^{38} -8.81913 q^{41} -5.47214 q^{43} -2.82843 q^{44} -2.00000 q^{46} +4.78282 q^{47} +1.00000 q^{49} -13.7082 q^{52} -6.53089 q^{53} -2.82843 q^{56} -18.1803 q^{58} +4.78282 q^{59} +9.70820 q^{61} +15.3500 q^{62} -12.9443 q^{64} -1.76393 q^{67} +1.08036 q^{68} +2.16073 q^{71} +3.47214 q^{73} -6.86474 q^{74} -14.4721 q^{76} +0.874032 q^{77} -1.47214 q^{79} -20.1803 q^{82} -1.54173 q^{83} -12.5216 q^{86} -2.47214 q^{88} +8.27895 q^{89} +4.23607 q^{91} -2.82843 q^{92} +10.9443 q^{94} -1.52786 q^{97} +2.28825 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 4 q^{7} - 8 q^{13} - 8 q^{22} - 4 q^{28} + 12 q^{34} - 12 q^{37} - 4 q^{43} - 8 q^{46} + 4 q^{49} - 28 q^{52} - 28 q^{58} + 12 q^{61} - 16 q^{64} - 16 q^{67} - 4 q^{73} - 40 q^{76} + 12 q^{79}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.28825 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(3\) 0 0
\(4\) 3.23607 1.61803
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 2.82843 1.00000
\(9\) 0 0
\(10\) 0 0
\(11\) −0.874032 −0.263531 −0.131765 0.991281i \(-0.542065\pi\)
−0.131765 + 0.991281i \(0.542065\pi\)
\(12\) 0 0
\(13\) −4.23607 −1.17487 −0.587437 0.809270i \(-0.699863\pi\)
−0.587437 + 0.809270i \(0.699863\pi\)
\(14\) −2.28825 −0.611559
\(15\) 0 0
\(16\) 0 0
\(17\) 0.333851 0.0809706 0.0404853 0.999180i \(-0.487110\pi\)
0.0404853 + 0.999180i \(0.487110\pi\)
\(18\) 0 0
\(19\) −4.47214 −1.02598 −0.512989 0.858395i \(-0.671462\pi\)
−0.512989 + 0.858395i \(0.671462\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −0.874032 −0.182248 −0.0911241 0.995840i \(-0.529046\pi\)
−0.0911241 + 0.995840i \(0.529046\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −9.69316 −1.90099
\(27\) 0 0
\(28\) −3.23607 −0.611559
\(29\) −7.94510 −1.47537 −0.737684 0.675146i \(-0.764081\pi\)
−0.737684 + 0.675146i \(0.764081\pi\)
\(30\) 0 0
\(31\) 6.70820 1.20483 0.602414 0.798183i \(-0.294205\pi\)
0.602414 + 0.798183i \(0.294205\pi\)
\(32\) −5.65685 −1.00000
\(33\) 0 0
\(34\) 0.763932 0.131013
\(35\) 0 0
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) −10.2333 −1.66007
\(39\) 0 0
\(40\) 0 0
\(41\) −8.81913 −1.37732 −0.688659 0.725086i \(-0.741800\pi\)
−0.688659 + 0.725086i \(0.741800\pi\)
\(42\) 0 0
\(43\) −5.47214 −0.834493 −0.417246 0.908793i \(-0.637005\pi\)
−0.417246 + 0.908793i \(0.637005\pi\)
\(44\) −2.82843 −0.426401
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) 4.78282 0.697646 0.348823 0.937189i \(-0.386581\pi\)
0.348823 + 0.937189i \(0.386581\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −13.7082 −1.90099
\(53\) −6.53089 −0.897086 −0.448543 0.893761i \(-0.648057\pi\)
−0.448543 + 0.893761i \(0.648057\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.82843 −0.377964
\(57\) 0 0
\(58\) −18.1803 −2.38720
\(59\) 4.78282 0.622670 0.311335 0.950300i \(-0.399224\pi\)
0.311335 + 0.950300i \(0.399224\pi\)
\(60\) 0 0
\(61\) 9.70820 1.24301 0.621504 0.783411i \(-0.286522\pi\)
0.621504 + 0.783411i \(0.286522\pi\)
\(62\) 15.3500 1.94945
\(63\) 0 0
\(64\) −12.9443 −1.61803
\(65\) 0 0
\(66\) 0 0
\(67\) −1.76393 −0.215499 −0.107749 0.994178i \(-0.534364\pi\)
−0.107749 + 0.994178i \(0.534364\pi\)
\(68\) 1.08036 0.131013
\(69\) 0 0
\(70\) 0 0
\(71\) 2.16073 0.256431 0.128216 0.991746i \(-0.459075\pi\)
0.128216 + 0.991746i \(0.459075\pi\)
\(72\) 0 0
\(73\) 3.47214 0.406383 0.203191 0.979139i \(-0.434869\pi\)
0.203191 + 0.979139i \(0.434869\pi\)
\(74\) −6.86474 −0.798009
\(75\) 0 0
\(76\) −14.4721 −1.66007
\(77\) 0.874032 0.0996052
\(78\) 0 0
\(79\) −1.47214 −0.165628 −0.0828141 0.996565i \(-0.526391\pi\)
−0.0828141 + 0.996565i \(0.526391\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −20.1803 −2.22855
\(83\) −1.54173 −0.169227 −0.0846136 0.996414i \(-0.526966\pi\)
−0.0846136 + 0.996414i \(0.526966\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −12.5216 −1.35024
\(87\) 0 0
\(88\) −2.47214 −0.263531
\(89\) 8.27895 0.877567 0.438783 0.898593i \(-0.355410\pi\)
0.438783 + 0.898593i \(0.355410\pi\)
\(90\) 0 0
\(91\) 4.23607 0.444061
\(92\) −2.82843 −0.294884
\(93\) 0 0
\(94\) 10.9443 1.12882
\(95\) 0 0
\(96\) 0 0
\(97\) −1.52786 −0.155131 −0.0775655 0.996987i \(-0.524715\pi\)
−0.0775655 + 0.996987i \(0.524715\pi\)
\(98\) 2.28825 0.231148
\(99\) 0 0
\(100\) 0 0
\(101\) 6.53089 0.649847 0.324924 0.945740i \(-0.394661\pi\)
0.324924 + 0.945740i \(0.394661\pi\)
\(102\) 0 0
\(103\) −7.76393 −0.765003 −0.382501 0.923955i \(-0.624937\pi\)
−0.382501 + 0.923955i \(0.624937\pi\)
\(104\) −11.9814 −1.17487
\(105\) 0 0
\(106\) −14.9443 −1.45152
\(107\) 13.1893 1.27506 0.637528 0.770427i \(-0.279957\pi\)
0.637528 + 0.770427i \(0.279957\pi\)
\(108\) 0 0
\(109\) −8.70820 −0.834095 −0.417047 0.908885i \(-0.636935\pi\)
−0.417047 + 0.908885i \(0.636935\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −20.1328 −1.89394 −0.946969 0.321324i \(-0.895872\pi\)
−0.946969 + 0.321324i \(0.895872\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −25.7109 −2.38720
\(117\) 0 0
\(118\) 10.9443 1.00750
\(119\) −0.333851 −0.0306040
\(120\) 0 0
\(121\) −10.2361 −0.930552
\(122\) 22.2148 2.01123
\(123\) 0 0
\(124\) 21.7082 1.94945
\(125\) 0 0
\(126\) 0 0
\(127\) −5.52786 −0.490519 −0.245259 0.969458i \(-0.578873\pi\)
−0.245259 + 0.969458i \(0.578873\pi\)
\(128\) −18.3060 −1.61803
\(129\) 0 0
\(130\) 0 0
\(131\) −16.6854 −1.45781 −0.728906 0.684614i \(-0.759971\pi\)
−0.728906 + 0.684614i \(0.759971\pi\)
\(132\) 0 0
\(133\) 4.47214 0.387783
\(134\) −4.03631 −0.348684
\(135\) 0 0
\(136\) 0.944272 0.0809706
\(137\) −4.91034 −0.419519 −0.209759 0.977753i \(-0.567268\pi\)
−0.209759 + 0.977753i \(0.567268\pi\)
\(138\) 0 0
\(139\) 12.2361 1.03785 0.518925 0.854820i \(-0.326332\pi\)
0.518925 + 0.854820i \(0.326332\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.94427 0.414914
\(143\) 3.70246 0.309615
\(144\) 0 0
\(145\) 0 0
\(146\) 7.94510 0.657541
\(147\) 0 0
\(148\) −9.70820 −0.798009
\(149\) 23.0888 1.89151 0.945754 0.324885i \(-0.105326\pi\)
0.945754 + 0.324885i \(0.105326\pi\)
\(150\) 0 0
\(151\) 4.47214 0.363937 0.181969 0.983304i \(-0.441753\pi\)
0.181969 + 0.983304i \(0.441753\pi\)
\(152\) −12.6491 −1.02598
\(153\) 0 0
\(154\) 2.00000 0.161165
\(155\) 0 0
\(156\) 0 0
\(157\) 2.23607 0.178458 0.0892288 0.996011i \(-0.471560\pi\)
0.0892288 + 0.996011i \(0.471560\pi\)
\(158\) −3.36861 −0.267992
\(159\) 0 0
\(160\) 0 0
\(161\) 0.874032 0.0688834
\(162\) 0 0
\(163\) −9.76393 −0.764770 −0.382385 0.924003i \(-0.624897\pi\)
−0.382385 + 0.924003i \(0.624897\pi\)
\(164\) −28.5393 −2.22855
\(165\) 0 0
\(166\) −3.52786 −0.273815
\(167\) 6.45207 0.499277 0.249638 0.968339i \(-0.419688\pi\)
0.249638 + 0.968339i \(0.419688\pi\)
\(168\) 0 0
\(169\) 4.94427 0.380329
\(170\) 0 0
\(171\) 0 0
\(172\) −17.7082 −1.35024
\(173\) −15.4775 −1.17674 −0.588368 0.808593i \(-0.700229\pi\)
−0.588368 + 0.808593i \(0.700229\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 18.9443 1.41993
\(179\) 25.3770 1.89677 0.948384 0.317124i \(-0.102717\pi\)
0.948384 + 0.317124i \(0.102717\pi\)
\(180\) 0 0
\(181\) −25.3607 −1.88504 −0.942522 0.334143i \(-0.891553\pi\)
−0.942522 + 0.334143i \(0.891553\pi\)
\(182\) 9.69316 0.718505
\(183\) 0 0
\(184\) −2.47214 −0.182248
\(185\) 0 0
\(186\) 0 0
\(187\) −0.291796 −0.0213382
\(188\) 15.4775 1.12882
\(189\) 0 0
\(190\) 0 0
\(191\) −5.11667 −0.370229 −0.185115 0.982717i \(-0.559266\pi\)
−0.185115 + 0.982717i \(0.559266\pi\)
\(192\) 0 0
\(193\) 5.41641 0.389882 0.194941 0.980815i \(-0.437549\pi\)
0.194941 + 0.980815i \(0.437549\pi\)
\(194\) −3.49613 −0.251007
\(195\) 0 0
\(196\) 3.23607 0.231148
\(197\) 21.8021 1.55333 0.776667 0.629911i \(-0.216909\pi\)
0.776667 + 0.629911i \(0.216909\pi\)
\(198\) 0 0
\(199\) 0.527864 0.0374193 0.0187096 0.999825i \(-0.494044\pi\)
0.0187096 + 0.999825i \(0.494044\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 14.9443 1.05148
\(203\) 7.94510 0.557637
\(204\) 0 0
\(205\) 0 0
\(206\) −17.7658 −1.23780
\(207\) 0 0
\(208\) 0 0
\(209\) 3.90879 0.270377
\(210\) 0 0
\(211\) −11.2918 −0.777359 −0.388680 0.921373i \(-0.627069\pi\)
−0.388680 + 0.921373i \(0.627069\pi\)
\(212\) −21.1344 −1.45152
\(213\) 0 0
\(214\) 30.1803 2.06309
\(215\) 0 0
\(216\) 0 0
\(217\) −6.70820 −0.455383
\(218\) −19.9265 −1.34959
\(219\) 0 0
\(220\) 0 0
\(221\) −1.41421 −0.0951303
\(222\) 0 0
\(223\) −17.1803 −1.15048 −0.575240 0.817984i \(-0.695091\pi\)
−0.575240 + 0.817984i \(0.695091\pi\)
\(224\) 5.65685 0.377964
\(225\) 0 0
\(226\) −46.0689 −3.06446
\(227\) −0.540182 −0.0358531 −0.0179266 0.999839i \(-0.505707\pi\)
−0.0179266 + 0.999839i \(0.505707\pi\)
\(228\) 0 0
\(229\) 21.6525 1.43084 0.715418 0.698697i \(-0.246236\pi\)
0.715418 + 0.698697i \(0.246236\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −22.4721 −1.47537
\(233\) 28.7456 1.88319 0.941595 0.336748i \(-0.109327\pi\)
0.941595 + 0.336748i \(0.109327\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 15.4775 1.00750
\(237\) 0 0
\(238\) −0.763932 −0.0495184
\(239\) −12.6004 −0.815052 −0.407526 0.913194i \(-0.633608\pi\)
−0.407526 + 0.913194i \(0.633608\pi\)
\(240\) 0 0
\(241\) 17.4721 1.12548 0.562740 0.826634i \(-0.309747\pi\)
0.562740 + 0.826634i \(0.309747\pi\)
\(242\) −23.4226 −1.50566
\(243\) 0 0
\(244\) 31.4164 2.01123
\(245\) 0 0
\(246\) 0 0
\(247\) 18.9443 1.20540
\(248\) 18.9737 1.20483
\(249\) 0 0
\(250\) 0 0
\(251\) −4.11512 −0.259744 −0.129872 0.991531i \(-0.541457\pi\)
−0.129872 + 0.991531i \(0.541457\pi\)
\(252\) 0 0
\(253\) 0.763932 0.0480280
\(254\) −12.6491 −0.793676
\(255\) 0 0
\(256\) −16.0000 −1.00000
\(257\) 12.5216 0.781075 0.390538 0.920587i \(-0.372289\pi\)
0.390538 + 0.920587i \(0.372289\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) 0 0
\(261\) 0 0
\(262\) −38.1803 −2.35879
\(263\) −30.4149 −1.87546 −0.937731 0.347361i \(-0.887078\pi\)
−0.937731 + 0.347361i \(0.887078\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 10.2333 0.627447
\(267\) 0 0
\(268\) −5.70820 −0.348684
\(269\) −28.6181 −1.74488 −0.872439 0.488723i \(-0.837463\pi\)
−0.872439 + 0.488723i \(0.837463\pi\)
\(270\) 0 0
\(271\) 18.4164 1.11872 0.559359 0.828926i \(-0.311048\pi\)
0.559359 + 0.828926i \(0.311048\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −11.2361 −0.678796
\(275\) 0 0
\(276\) 0 0
\(277\) −18.2361 −1.09570 −0.547850 0.836577i \(-0.684553\pi\)
−0.547850 + 0.836577i \(0.684553\pi\)
\(278\) 27.9991 1.67928
\(279\) 0 0
\(280\) 0 0
\(281\) 17.0193 1.01528 0.507642 0.861568i \(-0.330517\pi\)
0.507642 + 0.861568i \(0.330517\pi\)
\(282\) 0 0
\(283\) 12.4164 0.738079 0.369039 0.929414i \(-0.379687\pi\)
0.369039 + 0.929414i \(0.379687\pi\)
\(284\) 6.99226 0.414914
\(285\) 0 0
\(286\) 8.47214 0.500968
\(287\) 8.81913 0.520577
\(288\) 0 0
\(289\) −16.8885 −0.993444
\(290\) 0 0
\(291\) 0 0
\(292\) 11.2361 0.657541
\(293\) 9.02546 0.527273 0.263637 0.964622i \(-0.415078\pi\)
0.263637 + 0.964622i \(0.415078\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8.48528 −0.493197
\(297\) 0 0
\(298\) 52.8328 3.06052
\(299\) 3.70246 0.214119
\(300\) 0 0
\(301\) 5.47214 0.315409
\(302\) 10.2333 0.588863
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 16.4164 0.936934 0.468467 0.883481i \(-0.344807\pi\)
0.468467 + 0.883481i \(0.344807\pi\)
\(308\) 2.82843 0.161165
\(309\) 0 0
\(310\) 0 0
\(311\) 27.7928 1.57598 0.787992 0.615685i \(-0.211121\pi\)
0.787992 + 0.615685i \(0.211121\pi\)
\(312\) 0 0
\(313\) 20.8885 1.18069 0.590345 0.807151i \(-0.298992\pi\)
0.590345 + 0.807151i \(0.298992\pi\)
\(314\) 5.11667 0.288751
\(315\) 0 0
\(316\) −4.76393 −0.267992
\(317\) −12.5216 −0.703283 −0.351641 0.936135i \(-0.614376\pi\)
−0.351641 + 0.936135i \(0.614376\pi\)
\(318\) 0 0
\(319\) 6.94427 0.388805
\(320\) 0 0
\(321\) 0 0
\(322\) 2.00000 0.111456
\(323\) −1.49302 −0.0830741
\(324\) 0 0
\(325\) 0 0
\(326\) −22.3423 −1.23742
\(327\) 0 0
\(328\) −24.9443 −1.37732
\(329\) −4.78282 −0.263686
\(330\) 0 0
\(331\) −33.5410 −1.84358 −0.921791 0.387688i \(-0.873274\pi\)
−0.921791 + 0.387688i \(0.873274\pi\)
\(332\) −4.98915 −0.273815
\(333\) 0 0
\(334\) 14.7639 0.807846
\(335\) 0 0
\(336\) 0 0
\(337\) −0.819660 −0.0446497 −0.0223249 0.999751i \(-0.507107\pi\)
−0.0223249 + 0.999751i \(0.507107\pi\)
\(338\) 11.3137 0.615385
\(339\) 0 0
\(340\) 0 0
\(341\) −5.86319 −0.317509
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −15.4775 −0.834493
\(345\) 0 0
\(346\) −35.4164 −1.90400
\(347\) −32.4968 −1.74452 −0.872260 0.489042i \(-0.837346\pi\)
−0.872260 + 0.489042i \(0.837346\pi\)
\(348\) 0 0
\(349\) −35.0689 −1.87719 −0.938597 0.345015i \(-0.887874\pi\)
−0.938597 + 0.345015i \(0.887874\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.94427 0.263531
\(353\) −19.3863 −1.03183 −0.515915 0.856640i \(-0.672548\pi\)
−0.515915 + 0.856640i \(0.672548\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 26.7912 1.41993
\(357\) 0 0
\(358\) 58.0689 3.06904
\(359\) 6.78593 0.358147 0.179074 0.983836i \(-0.442690\pi\)
0.179074 + 0.983836i \(0.442690\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −58.0315 −3.05007
\(363\) 0 0
\(364\) 13.7082 0.718505
\(365\) 0 0
\(366\) 0 0
\(367\) −25.0000 −1.30499 −0.652495 0.757793i \(-0.726278\pi\)
−0.652495 + 0.757793i \(0.726278\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.53089 0.339067
\(372\) 0 0
\(373\) −29.4164 −1.52312 −0.761562 0.648092i \(-0.775567\pi\)
−0.761562 + 0.648092i \(0.775567\pi\)
\(374\) −0.667701 −0.0345260
\(375\) 0 0
\(376\) 13.5279 0.697646
\(377\) 33.6560 1.73337
\(378\) 0 0
\(379\) 3.65248 0.187615 0.0938075 0.995590i \(-0.470096\pi\)
0.0938075 + 0.995590i \(0.470096\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −11.7082 −0.599044
\(383\) −11.2349 −0.574076 −0.287038 0.957919i \(-0.592671\pi\)
−0.287038 + 0.957919i \(0.592671\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 12.3941 0.630842
\(387\) 0 0
\(388\) −4.94427 −0.251007
\(389\) 21.8021 1.10541 0.552705 0.833377i \(-0.313596\pi\)
0.552705 + 0.833377i \(0.313596\pi\)
\(390\) 0 0
\(391\) −0.291796 −0.0147568
\(392\) 2.82843 0.142857
\(393\) 0 0
\(394\) 49.8885 2.51335
\(395\) 0 0
\(396\) 0 0
\(397\) −1.47214 −0.0738844 −0.0369422 0.999317i \(-0.511762\pi\)
−0.0369422 + 0.999317i \(0.511762\pi\)
\(398\) 1.20788 0.0605457
\(399\) 0 0
\(400\) 0 0
\(401\) 19.4651 0.972043 0.486021 0.873947i \(-0.338448\pi\)
0.486021 + 0.873947i \(0.338448\pi\)
\(402\) 0 0
\(403\) −28.4164 −1.41552
\(404\) 21.1344 1.05148
\(405\) 0 0
\(406\) 18.1803 0.902275
\(407\) 2.62210 0.129972
\(408\) 0 0
\(409\) −14.5279 −0.718357 −0.359178 0.933269i \(-0.616943\pi\)
−0.359178 + 0.933269i \(0.616943\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −25.1246 −1.23780
\(413\) −4.78282 −0.235347
\(414\) 0 0
\(415\) 0 0
\(416\) 23.9628 1.17487
\(417\) 0 0
\(418\) 8.94427 0.437479
\(419\) 7.27740 0.355524 0.177762 0.984073i \(-0.443114\pi\)
0.177762 + 0.984073i \(0.443114\pi\)
\(420\) 0 0
\(421\) −4.70820 −0.229464 −0.114732 0.993396i \(-0.536601\pi\)
−0.114732 + 0.993396i \(0.536601\pi\)
\(422\) −25.8384 −1.25779
\(423\) 0 0
\(424\) −18.4721 −0.897086
\(425\) 0 0
\(426\) 0 0
\(427\) −9.70820 −0.469813
\(428\) 42.6814 2.06309
\(429\) 0 0
\(430\) 0 0
\(431\) 23.7078 1.14196 0.570982 0.820963i \(-0.306563\pi\)
0.570982 + 0.820963i \(0.306563\pi\)
\(432\) 0 0
\(433\) 9.65248 0.463868 0.231934 0.972731i \(-0.425495\pi\)
0.231934 + 0.972731i \(0.425495\pi\)
\(434\) −15.3500 −0.736824
\(435\) 0 0
\(436\) −28.1803 −1.34959
\(437\) 3.90879 0.186983
\(438\) 0 0
\(439\) 9.00000 0.429547 0.214773 0.976664i \(-0.431099\pi\)
0.214773 + 0.976664i \(0.431099\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3.23607 −0.153924
\(443\) −19.5927 −0.930875 −0.465438 0.885081i \(-0.654103\pi\)
−0.465438 + 0.885081i \(0.654103\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −39.3128 −1.86152
\(447\) 0 0
\(448\) 12.9443 0.611559
\(449\) 37.4373 1.76677 0.883387 0.468645i \(-0.155258\pi\)
0.883387 + 0.468645i \(0.155258\pi\)
\(450\) 0 0
\(451\) 7.70820 0.362965
\(452\) −65.1512 −3.06446
\(453\) 0 0
\(454\) −1.23607 −0.0580115
\(455\) 0 0
\(456\) 0 0
\(457\) 30.3607 1.42021 0.710106 0.704094i \(-0.248647\pi\)
0.710106 + 0.704094i \(0.248647\pi\)
\(458\) 49.5462 2.31514
\(459\) 0 0
\(460\) 0 0
\(461\) 38.3600 1.78660 0.893302 0.449458i \(-0.148383\pi\)
0.893302 + 0.449458i \(0.148383\pi\)
\(462\) 0 0
\(463\) −21.9443 −1.01984 −0.509918 0.860223i \(-0.670324\pi\)
−0.509918 + 0.860223i \(0.670324\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 65.7771 3.04706
\(467\) −17.8446 −0.825749 −0.412875 0.910788i \(-0.635475\pi\)
−0.412875 + 0.910788i \(0.635475\pi\)
\(468\) 0 0
\(469\) 1.76393 0.0814508
\(470\) 0 0
\(471\) 0 0
\(472\) 13.5279 0.622670
\(473\) 4.78282 0.219914
\(474\) 0 0
\(475\) 0 0
\(476\) −1.08036 −0.0495184
\(477\) 0 0
\(478\) −28.8328 −1.31878
\(479\) 18.3848 0.840022 0.420011 0.907519i \(-0.362026\pi\)
0.420011 + 0.907519i \(0.362026\pi\)
\(480\) 0 0
\(481\) 12.7082 0.579444
\(482\) 39.9805 1.82106
\(483\) 0 0
\(484\) −33.1246 −1.50566
\(485\) 0 0
\(486\) 0 0
\(487\) −7.18034 −0.325372 −0.162686 0.986678i \(-0.552016\pi\)
−0.162686 + 0.986678i \(0.552016\pi\)
\(488\) 27.4589 1.24301
\(489\) 0 0
\(490\) 0 0
\(491\) −4.98915 −0.225157 −0.112579 0.993643i \(-0.535911\pi\)
−0.112579 + 0.993643i \(0.535911\pi\)
\(492\) 0 0
\(493\) −2.65248 −0.119462
\(494\) 43.3491 1.95037
\(495\) 0 0
\(496\) 0 0
\(497\) −2.16073 −0.0969218
\(498\) 0 0
\(499\) −35.3607 −1.58296 −0.791481 0.611194i \(-0.790689\pi\)
−0.791481 + 0.611194i \(0.790689\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −9.41641 −0.420275
\(503\) 23.5502 1.05005 0.525025 0.851087i \(-0.324056\pi\)
0.525025 + 0.851087i \(0.324056\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.74806 0.0777109
\(507\) 0 0
\(508\) −17.8885 −0.793676
\(509\) 27.3314 1.21144 0.605722 0.795676i \(-0.292884\pi\)
0.605722 + 0.795676i \(0.292884\pi\)
\(510\) 0 0
\(511\) −3.47214 −0.153598
\(512\) 0 0
\(513\) 0 0
\(514\) 28.6525 1.26381
\(515\) 0 0
\(516\) 0 0
\(517\) −4.18034 −0.183851
\(518\) 6.86474 0.301619
\(519\) 0 0
\(520\) 0 0
\(521\) 18.4335 0.807586 0.403793 0.914850i \(-0.367692\pi\)
0.403793 + 0.914850i \(0.367692\pi\)
\(522\) 0 0
\(523\) −36.6525 −1.60270 −0.801350 0.598195i \(-0.795885\pi\)
−0.801350 + 0.598195i \(0.795885\pi\)
\(524\) −53.9952 −2.35879
\(525\) 0 0
\(526\) −69.5967 −3.03456
\(527\) 2.23954 0.0975558
\(528\) 0 0
\(529\) −22.2361 −0.966786
\(530\) 0 0
\(531\) 0 0
\(532\) 14.4721 0.627447
\(533\) 37.3584 1.61817
\(534\) 0 0
\(535\) 0 0
\(536\) −4.98915 −0.215499
\(537\) 0 0
\(538\) −65.4853 −2.82327
\(539\) −0.874032 −0.0376472
\(540\) 0 0
\(541\) 34.6525 1.48983 0.744913 0.667161i \(-0.232491\pi\)
0.744913 + 0.667161i \(0.232491\pi\)
\(542\) 42.1413 1.81012
\(543\) 0 0
\(544\) −1.88854 −0.0809706
\(545\) 0 0
\(546\) 0 0
\(547\) −18.8197 −0.804671 −0.402335 0.915492i \(-0.631801\pi\)
−0.402335 + 0.915492i \(0.631801\pi\)
\(548\) −15.8902 −0.678796
\(549\) 0 0
\(550\) 0 0
\(551\) 35.5316 1.51370
\(552\) 0 0
\(553\) 1.47214 0.0626016
\(554\) −41.7286 −1.77288
\(555\) 0 0
\(556\) 39.5967 1.67928
\(557\) −4.83153 −0.204719 −0.102359 0.994747i \(-0.532639\pi\)
−0.102359 + 0.994747i \(0.532639\pi\)
\(558\) 0 0
\(559\) 23.1803 0.980424
\(560\) 0 0
\(561\) 0 0
\(562\) 38.9443 1.64276
\(563\) −24.9157 −1.05007 −0.525035 0.851081i \(-0.675948\pi\)
−0.525035 + 0.851081i \(0.675948\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 28.4118 1.19424
\(567\) 0 0
\(568\) 6.11146 0.256431
\(569\) 5.99070 0.251143 0.125572 0.992085i \(-0.459923\pi\)
0.125572 + 0.992085i \(0.459923\pi\)
\(570\) 0 0
\(571\) −6.11146 −0.255756 −0.127878 0.991790i \(-0.540817\pi\)
−0.127878 + 0.991790i \(0.540817\pi\)
\(572\) 11.9814 0.500968
\(573\) 0 0
\(574\) 20.1803 0.842311
\(575\) 0 0
\(576\) 0 0
\(577\) 13.1246 0.546385 0.273192 0.961959i \(-0.411920\pi\)
0.273192 + 0.961959i \(0.411920\pi\)
\(578\) −38.6451 −1.60743
\(579\) 0 0
\(580\) 0 0
\(581\) 1.54173 0.0639619
\(582\) 0 0
\(583\) 5.70820 0.236410
\(584\) 9.82068 0.406383
\(585\) 0 0
\(586\) 20.6525 0.853146
\(587\) 15.5563 0.642079 0.321040 0.947066i \(-0.395968\pi\)
0.321040 + 0.947066i \(0.395968\pi\)
\(588\) 0 0
\(589\) −30.0000 −1.23613
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16.7642 −0.688424 −0.344212 0.938892i \(-0.611854\pi\)
−0.344212 + 0.938892i \(0.611854\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 74.7169 3.06052
\(597\) 0 0
\(598\) 8.47214 0.346451
\(599\) 25.6321 1.04730 0.523649 0.851934i \(-0.324570\pi\)
0.523649 + 0.851934i \(0.324570\pi\)
\(600\) 0 0
\(601\) 33.4721 1.36536 0.682678 0.730719i \(-0.260815\pi\)
0.682678 + 0.730719i \(0.260815\pi\)
\(602\) 12.5216 0.510342
\(603\) 0 0
\(604\) 14.4721 0.588863
\(605\) 0 0
\(606\) 0 0
\(607\) −25.5410 −1.03668 −0.518339 0.855175i \(-0.673449\pi\)
−0.518339 + 0.855175i \(0.673449\pi\)
\(608\) 25.2982 1.02598
\(609\) 0 0
\(610\) 0 0
\(611\) −20.2604 −0.819646
\(612\) 0 0
\(613\) −24.4164 −0.986169 −0.493085 0.869981i \(-0.664131\pi\)
−0.493085 + 0.869981i \(0.664131\pi\)
\(614\) 37.5648 1.51599
\(615\) 0 0
\(616\) 2.47214 0.0996052
\(617\) −19.7990 −0.797077 −0.398539 0.917152i \(-0.630483\pi\)
−0.398539 + 0.917152i \(0.630483\pi\)
\(618\) 0 0
\(619\) −29.7082 −1.19407 −0.597037 0.802214i \(-0.703655\pi\)
−0.597037 + 0.802214i \(0.703655\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 63.5967 2.55000
\(623\) −8.27895 −0.331689
\(624\) 0 0
\(625\) 0 0
\(626\) 47.7981 1.91040
\(627\) 0 0
\(628\) 7.23607 0.288751
\(629\) −1.00155 −0.0399345
\(630\) 0 0
\(631\) 20.2361 0.805585 0.402793 0.915291i \(-0.368040\pi\)
0.402793 + 0.915291i \(0.368040\pi\)
\(632\) −4.16383 −0.165628
\(633\) 0 0
\(634\) −28.6525 −1.13794
\(635\) 0 0
\(636\) 0 0
\(637\) −4.23607 −0.167839
\(638\) 15.8902 0.629099
\(639\) 0 0
\(640\) 0 0
\(641\) −43.8893 −1.73352 −0.866762 0.498722i \(-0.833803\pi\)
−0.866762 + 0.498722i \(0.833803\pi\)
\(642\) 0 0
\(643\) −23.0557 −0.909229 −0.454615 0.890688i \(-0.650223\pi\)
−0.454615 + 0.890688i \(0.650223\pi\)
\(644\) 2.82843 0.111456
\(645\) 0 0
\(646\) −3.41641 −0.134417
\(647\) 30.2086 1.18762 0.593811 0.804605i \(-0.297623\pi\)
0.593811 + 0.804605i \(0.297623\pi\)
\(648\) 0 0
\(649\) −4.18034 −0.164093
\(650\) 0 0
\(651\) 0 0
\(652\) −31.5967 −1.23742
\(653\) 2.33695 0.0914521 0.0457260 0.998954i \(-0.485440\pi\)
0.0457260 + 0.998954i \(0.485440\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −10.9443 −0.426652
\(659\) 22.4211 0.873402 0.436701 0.899607i \(-0.356147\pi\)
0.436701 + 0.899607i \(0.356147\pi\)
\(660\) 0 0
\(661\) 49.0689 1.90856 0.954279 0.298917i \(-0.0966253\pi\)
0.954279 + 0.298917i \(0.0966253\pi\)
\(662\) −76.7501 −2.98298
\(663\) 0 0
\(664\) −4.36068 −0.169227
\(665\) 0 0
\(666\) 0 0
\(667\) 6.94427 0.268883
\(668\) 20.8794 0.807846
\(669\) 0 0
\(670\) 0 0
\(671\) −8.48528 −0.327571
\(672\) 0 0
\(673\) 27.7639 1.07022 0.535110 0.844782i \(-0.320270\pi\)
0.535110 + 0.844782i \(0.320270\pi\)
\(674\) −1.87558 −0.0722448
\(675\) 0 0
\(676\) 16.0000 0.615385
\(677\) −23.3438 −0.897176 −0.448588 0.893739i \(-0.648073\pi\)
−0.448588 + 0.893739i \(0.648073\pi\)
\(678\) 0 0
\(679\) 1.52786 0.0586340
\(680\) 0 0
\(681\) 0 0
\(682\) −13.4164 −0.513741
\(683\) 8.48528 0.324680 0.162340 0.986735i \(-0.448096\pi\)
0.162340 + 0.986735i \(0.448096\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −2.28825 −0.0873656
\(687\) 0 0
\(688\) 0 0
\(689\) 27.6653 1.05396
\(690\) 0 0
\(691\) 1.81966 0.0692231 0.0346116 0.999401i \(-0.488981\pi\)
0.0346116 + 0.999401i \(0.488981\pi\)
\(692\) −50.0864 −1.90400
\(693\) 0 0
\(694\) −74.3607 −2.82269
\(695\) 0 0
\(696\) 0 0
\(697\) −2.94427 −0.111522
\(698\) −80.2462 −3.03736
\(699\) 0 0
\(700\) 0 0
\(701\) 11.3624 0.429153 0.214576 0.976707i \(-0.431163\pi\)
0.214576 + 0.976707i \(0.431163\pi\)
\(702\) 0 0
\(703\) 13.4164 0.506009
\(704\) 11.3137 0.426401
\(705\) 0 0
\(706\) −44.3607 −1.66954
\(707\) −6.53089 −0.245619
\(708\) 0 0
\(709\) −19.5279 −0.733384 −0.366692 0.930342i \(-0.619510\pi\)
−0.366692 + 0.930342i \(0.619510\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 23.4164 0.877567
\(713\) −5.86319 −0.219578
\(714\) 0 0
\(715\) 0 0
\(716\) 82.1218 3.06904
\(717\) 0 0
\(718\) 15.5279 0.579495
\(719\) −18.4636 −0.688576 −0.344288 0.938864i \(-0.611880\pi\)
−0.344288 + 0.938864i \(0.611880\pi\)
\(720\) 0 0
\(721\) 7.76393 0.289144
\(722\) 2.28825 0.0851597
\(723\) 0 0
\(724\) −82.0689 −3.05007
\(725\) 0 0
\(726\) 0 0
\(727\) −37.3607 −1.38563 −0.692815 0.721115i \(-0.743630\pi\)
−0.692815 + 0.721115i \(0.743630\pi\)
\(728\) 11.9814 0.444061
\(729\) 0 0
\(730\) 0 0
\(731\) −1.82688 −0.0675694
\(732\) 0 0
\(733\) −8.58359 −0.317042 −0.158521 0.987356i \(-0.550673\pi\)
−0.158521 + 0.987356i \(0.550673\pi\)
\(734\) −57.2061 −2.11152
\(735\) 0 0
\(736\) 4.94427 0.182248
\(737\) 1.54173 0.0567905
\(738\) 0 0
\(739\) 33.7771 1.24251 0.621255 0.783608i \(-0.286623\pi\)
0.621255 + 0.783608i \(0.286623\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 14.9443 0.548621
\(743\) 23.0401 0.845259 0.422629 0.906303i \(-0.361107\pi\)
0.422629 + 0.906303i \(0.361107\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −67.3120 −2.46447
\(747\) 0 0
\(748\) −0.944272 −0.0345260
\(749\) −13.1893 −0.481926
\(750\) 0 0
\(751\) −47.0689 −1.71757 −0.858784 0.512338i \(-0.828780\pi\)
−0.858784 + 0.512338i \(0.828780\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 77.0132 2.80465
\(755\) 0 0
\(756\) 0 0
\(757\) −5.12461 −0.186257 −0.0931286 0.995654i \(-0.529687\pi\)
−0.0931286 + 0.995654i \(0.529687\pi\)
\(758\) 8.35776 0.303568
\(759\) 0 0
\(760\) 0 0
\(761\) −31.2101 −1.13137 −0.565683 0.824623i \(-0.691387\pi\)
−0.565683 + 0.824623i \(0.691387\pi\)
\(762\) 0 0
\(763\) 8.70820 0.315258
\(764\) −16.5579 −0.599044
\(765\) 0 0
\(766\) −25.7082 −0.928875
\(767\) −20.2604 −0.731559
\(768\) 0 0
\(769\) −13.1803 −0.475295 −0.237648 0.971351i \(-0.576376\pi\)
−0.237648 + 0.971351i \(0.576376\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 17.5279 0.630842
\(773\) 10.5185 0.378324 0.189162 0.981946i \(-0.439423\pi\)
0.189162 + 0.981946i \(0.439423\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4.32145 −0.155131
\(777\) 0 0
\(778\) 49.8885 1.78859
\(779\) 39.4404 1.41310
\(780\) 0 0
\(781\) −1.88854 −0.0675774
\(782\) −0.667701 −0.0238769
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −17.3050 −0.616855 −0.308427 0.951248i \(-0.599803\pi\)
−0.308427 + 0.951248i \(0.599803\pi\)
\(788\) 70.5531 2.51335
\(789\) 0 0
\(790\) 0 0
\(791\) 20.1328 0.715841
\(792\) 0 0
\(793\) −41.1246 −1.46038
\(794\) −3.36861 −0.119547
\(795\) 0 0
\(796\) 1.70820 0.0605457
\(797\) 19.4350 0.688424 0.344212 0.938892i \(-0.388146\pi\)
0.344212 + 0.938892i \(0.388146\pi\)
\(798\) 0 0
\(799\) 1.59675 0.0564889
\(800\) 0 0
\(801\) 0 0
\(802\) 44.5410 1.57280
\(803\) −3.03476 −0.107094
\(804\) 0 0
\(805\) 0 0
\(806\) −65.0237 −2.29036
\(807\) 0 0
\(808\) 18.4721 0.649847
\(809\) −24.1692 −0.849742 −0.424871 0.905254i \(-0.639681\pi\)
−0.424871 + 0.905254i \(0.639681\pi\)
\(810\) 0 0
\(811\) 34.2361 1.20219 0.601095 0.799177i \(-0.294731\pi\)
0.601095 + 0.799177i \(0.294731\pi\)
\(812\) 25.7109 0.902275
\(813\) 0 0
\(814\) 6.00000 0.210300
\(815\) 0 0
\(816\) 0 0
\(817\) 24.4721 0.856172
\(818\) −33.2433 −1.16233
\(819\) 0 0
\(820\) 0 0
\(821\) −45.8924 −1.60166 −0.800828 0.598894i \(-0.795607\pi\)
−0.800828 + 0.598894i \(0.795607\pi\)
\(822\) 0 0
\(823\) 23.3607 0.814302 0.407151 0.913361i \(-0.366522\pi\)
0.407151 + 0.913361i \(0.366522\pi\)
\(824\) −21.9597 −0.765003
\(825\) 0 0
\(826\) −10.9443 −0.380800
\(827\) 30.7788 1.07029 0.535143 0.844762i \(-0.320258\pi\)
0.535143 + 0.844762i \(0.320258\pi\)
\(828\) 0 0
\(829\) 32.7771 1.13840 0.569198 0.822201i \(-0.307254\pi\)
0.569198 + 0.822201i \(0.307254\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 54.8328 1.90099
\(833\) 0.333851 0.0115672
\(834\) 0 0
\(835\) 0 0
\(836\) 12.6491 0.437479
\(837\) 0 0
\(838\) 16.6525 0.575250
\(839\) −12.5216 −0.432293 −0.216147 0.976361i \(-0.569349\pi\)
−0.216147 + 0.976361i \(0.569349\pi\)
\(840\) 0 0
\(841\) 34.1246 1.17671
\(842\) −10.7735 −0.371280
\(843\) 0 0
\(844\) −36.5410 −1.25779
\(845\) 0 0
\(846\) 0 0
\(847\) 10.2361 0.351715
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.62210 0.0898843
\(852\) 0 0
\(853\) −39.2492 −1.34387 −0.671934 0.740611i \(-0.734536\pi\)
−0.671934 + 0.740611i \(0.734536\pi\)
\(854\) −22.2148 −0.760173
\(855\) 0 0
\(856\) 37.3050 1.27506
\(857\) 39.9805 1.36571 0.682855 0.730554i \(-0.260738\pi\)
0.682855 + 0.730554i \(0.260738\pi\)
\(858\) 0 0
\(859\) −48.5967 −1.65810 −0.829050 0.559175i \(-0.811118\pi\)
−0.829050 + 0.559175i \(0.811118\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 54.2492 1.84774
\(863\) −3.90879 −0.133057 −0.0665284 0.997785i \(-0.521192\pi\)
−0.0665284 + 0.997785i \(0.521192\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 22.0872 0.750555
\(867\) 0 0
\(868\) −21.7082 −0.736824
\(869\) 1.28669 0.0436481
\(870\) 0 0
\(871\) 7.47214 0.253184
\(872\) −24.6305 −0.834095
\(873\) 0 0
\(874\) 8.94427 0.302545
\(875\) 0 0
\(876\) 0 0
\(877\) −13.7771 −0.465219 −0.232610 0.972570i \(-0.574726\pi\)
−0.232610 + 0.972570i \(0.574726\pi\)
\(878\) 20.5942 0.695021
\(879\) 0 0
\(880\) 0 0
\(881\) 35.8955 1.20935 0.604675 0.796472i \(-0.293303\pi\)
0.604675 + 0.796472i \(0.293303\pi\)
\(882\) 0 0
\(883\) −52.4296 −1.76440 −0.882198 0.470879i \(-0.843937\pi\)
−0.882198 + 0.470879i \(0.843937\pi\)
\(884\) −4.57649 −0.153924
\(885\) 0 0
\(886\) −44.8328 −1.50619
\(887\) −44.7634 −1.50301 −0.751503 0.659729i \(-0.770671\pi\)
−0.751503 + 0.659729i \(0.770671\pi\)
\(888\) 0 0
\(889\) 5.52786 0.185399
\(890\) 0 0
\(891\) 0 0
\(892\) −55.5967 −1.86152
\(893\) −21.3894 −0.715770
\(894\) 0 0
\(895\) 0 0
\(896\) 18.3060 0.611559
\(897\) 0 0
\(898\) 85.6656 2.85870
\(899\) −53.2974 −1.77757
\(900\) 0 0
\(901\) −2.18034 −0.0726377
\(902\) 17.6383 0.587290
\(903\) 0 0
\(904\) −56.9443 −1.89394
\(905\) 0 0
\(906\) 0 0
\(907\) −26.7082 −0.886831 −0.443416 0.896316i \(-0.646233\pi\)
−0.443416 + 0.896316i \(0.646233\pi\)
\(908\) −1.74806 −0.0580115
\(909\) 0 0
\(910\) 0 0
\(911\) −12.3153 −0.408023 −0.204011 0.978969i \(-0.565398\pi\)
−0.204011 + 0.978969i \(0.565398\pi\)
\(912\) 0 0
\(913\) 1.34752 0.0445965
\(914\) 69.4727 2.29795
\(915\) 0 0
\(916\) 70.0689 2.31514
\(917\) 16.6854 0.551001
\(918\) 0 0
\(919\) 34.5279 1.13897 0.569485 0.822002i \(-0.307143\pi\)
0.569485 + 0.822002i \(0.307143\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 87.7771 2.89078
\(923\) −9.15298 −0.301274
\(924\) 0 0
\(925\) 0 0
\(926\) −50.2139 −1.65013
\(927\) 0 0
\(928\) 44.9443 1.47537
\(929\) −14.9675 −0.491066 −0.245533 0.969388i \(-0.578963\pi\)
−0.245533 + 0.969388i \(0.578963\pi\)
\(930\) 0 0
\(931\) −4.47214 −0.146568
\(932\) 93.0228 3.04706
\(933\) 0 0
\(934\) −40.8328 −1.33609
\(935\) 0 0
\(936\) 0 0
\(937\) 18.7639 0.612991 0.306495 0.951872i \(-0.400844\pi\)
0.306495 + 0.951872i \(0.400844\pi\)
\(938\) 4.03631 0.131790
\(939\) 0 0
\(940\) 0 0
\(941\) −3.03476 −0.0989303 −0.0494651 0.998776i \(-0.515752\pi\)
−0.0494651 + 0.998776i \(0.515752\pi\)
\(942\) 0 0
\(943\) 7.70820 0.251014
\(944\) 0 0
\(945\) 0 0
\(946\) 10.9443 0.355829
\(947\) 28.9219 0.939834 0.469917 0.882710i \(-0.344284\pi\)
0.469917 + 0.882710i \(0.344284\pi\)
\(948\) 0 0
\(949\) −14.7082 −0.477449
\(950\) 0 0
\(951\) 0 0
\(952\) −0.944272 −0.0306040
\(953\) 16.2241 0.525549 0.262774 0.964857i \(-0.415363\pi\)
0.262774 + 0.964857i \(0.415363\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −40.7758 −1.31878
\(957\) 0 0
\(958\) 42.0689 1.35918
\(959\) 4.91034 0.158563
\(960\) 0 0
\(961\) 14.0000 0.451613
\(962\) 29.0795 0.937560
\(963\) 0 0
\(964\) 56.5410 1.82106
\(965\) 0 0
\(966\) 0 0
\(967\) 7.06888 0.227320 0.113660 0.993520i \(-0.463743\pi\)
0.113660 + 0.993520i \(0.463743\pi\)
\(968\) −28.9520 −0.930552
\(969\) 0 0
\(970\) 0 0
\(971\) 43.4280 1.39367 0.696835 0.717232i \(-0.254591\pi\)
0.696835 + 0.717232i \(0.254591\pi\)
\(972\) 0 0
\(973\) −12.2361 −0.392270
\(974\) −16.4304 −0.526463
\(975\) 0 0
\(976\) 0 0
\(977\) −59.4944 −1.90339 −0.951697 0.307039i \(-0.900662\pi\)
−0.951697 + 0.307039i \(0.900662\pi\)
\(978\) 0 0
\(979\) −7.23607 −0.231266
\(980\) 0 0
\(981\) 0 0
\(982\) −11.4164 −0.364312
\(983\) 24.2967 0.774943 0.387472 0.921882i \(-0.373348\pi\)
0.387472 + 0.921882i \(0.373348\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −6.06952 −0.193293
\(987\) 0 0
\(988\) 61.3050 1.95037
\(989\) 4.78282 0.152085
\(990\) 0 0
\(991\) −20.3607 −0.646778 −0.323389 0.946266i \(-0.604822\pi\)
−0.323389 + 0.946266i \(0.604822\pi\)
\(992\) −37.9473 −1.20483
\(993\) 0 0
\(994\) −4.94427 −0.156823
\(995\) 0 0
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) −80.9139 −2.56129
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4725.2.a.bt.1.4 yes 4
3.2 odd 2 inner 4725.2.a.bt.1.1 4
5.4 even 2 4725.2.a.bw.1.1 yes 4
15.14 odd 2 4725.2.a.bw.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4725.2.a.bt.1.1 4 3.2 odd 2 inner
4725.2.a.bt.1.4 yes 4 1.1 even 1 trivial
4725.2.a.bw.1.1 yes 4 5.4 even 2
4725.2.a.bw.1.4 yes 4 15.14 odd 2