Properties

Label 46800.2.a.fh
Level 4680046800
Weight 22
Character orbit 46800.a
Self dual yes
Analytic conductor 373.700373.700
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [46800,2,Mod(1,46800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(46800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("46800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 46800=24325213 46800 = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 46800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,0,0,0,4,0,0,0,0,0,-1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,0, 4,0,0,0,0,0,-6,0,0,0,6,0,4,0,0,0,4,0,9,0,0,0,-10,0,0,0,0,0,0,0,-2,0,0, 0,0,0,8,0,0,0,4,0,6,0,0,0,0,0,8,0,0,0,-8,0,0,0,0,0,6,0,-4,0,0,0,0,0,14, 0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 373.699881460373.699881460
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+4q7q13+2q17+2q29+4q316q37+6q41+4q43+4q47+9q4910q532q61+8q67+4q71+6q73+8q798q83+6q894q91++14q97+O(q100) q + 4 q^{7} - q^{13} + 2 q^{17} + 2 q^{29} + 4 q^{31} - 6 q^{37} + 6 q^{41} + 4 q^{43} + 4 q^{47} + 9 q^{49} - 10 q^{53} - 2 q^{61} + 8 q^{67} + 4 q^{71} + 6 q^{73} + 8 q^{79} - 8 q^{83} + 6 q^{89} - 4 q^{91}+ \cdots + 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
55 +1 +1
1313 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.