gp:[N,k,chi] = [46410,2,Mod(1,46410)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46410, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("46410.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: |
N |
= |
46410=2⋅3⋅5⋅7⋅13⋅17 |
Weight: |
k |
= |
2 |
Character orbit: |
[χ] |
= |
46410.a (trivial) |
Newform invariants
sage:traces = [1,-1,-1,1,1,1,1,-1,1,-1,0,-1,-1,-1,-1,1,-1,-1,4,1,-1,0,-4,1,
1,1,-1,1,-2,1,-8,-1,0,1,1,1,-6,-4,1,-1,2,1,8,0,1,4,-4,-1,1,-1,1,-1,6,1,
0,-1,-4,2,-4,-1,-6,8,1,1,-1,0,-4,-1,4,-1,-8,-1,-14,6,-1,4,0,-1,16,1,1,
-2,12,-1,-1,-8,2,0,2,-1,-1,-4,8,4,4,1,2,-1,0,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
p |
Sign
|
2 |
+1 |
3 |
+1 |
5 |
−1 |
7 |
−1 |
13 |
+1 |
17 |
+1 |
This newform does not admit any (nontrivial) inner twists.
Twists of this newform have not been computed.