gp:[N,k,chi] = [46410,2,Mod(1,46410)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("46410.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46410, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,1,1,1,-1,1,1,1,1,-1,-4,1,1,1,-1,1,-1,1,6,-1,1,-4,-6,1,1,1,
1,1,6,-1,0,1,-4,-1,-1,1,-2,6,1,-1,0,1,-8,-4,-1,-6,0,1,1,1,-1,1,-6,1,4,
1,6,6,-4,-1,-10,0,1,1,-1,-4,2,-1,-6,-1,0,1,0,-2,1,6,-4,1,6,-1,1,0,-2,1,
1,-8,6,-4,-2,-1,1,-6,0,0,-6,1,-12,1,-4,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
| \( p \) |
Sign
|
| \(2\) |
\( -1 \) |
| \(3\) |
\( -1 \) |
| \(5\) |
\( +1 \) |
| \(7\) |
\( -1 \) |
| \(13\) |
\( -1 \) |
| \(17\) |
\( +1 \) |
This newform does not admit any (nontrivial) inner twists.
Twists of this newform have not been computed.