Defining parameters
Level: | \( N \) | \(=\) | \( 4620 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4620.be (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(2304\) | ||
Trace bound: | \(23\) | ||
Distinguishing \(T_p\): | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4620, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1176 | 64 | 1112 |
Cusp forms | 1128 | 64 | 1064 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(4620, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
4620.2.be.a | $4$ | $36.891$ | \(\Q(i, \sqrt{7})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{3}-\beta _{1}q^{5}-\beta _{3}q^{7}-q^{9}+(2+\cdots)q^{11}+\cdots\) |
4620.2.be.b | $4$ | $36.891$ | \(\Q(i, \sqrt{7})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+\beta _{1}q^{5}-\beta _{2}q^{7}-q^{9}+(2+\cdots)q^{11}+\cdots\) |
4620.2.be.c | $12$ | $36.891$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{7}q^{3}+\beta _{7}q^{5}+\beta _{8}q^{7}-q^{9}+(-1+\cdots)q^{11}+\cdots\) |
4620.2.be.d | $12$ | $36.891$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{10}q^{3}+\beta _{10}q^{5}+(-\beta _{3}+\beta _{4})q^{7}+\cdots\) |
4620.2.be.e | $32$ | $36.891$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(4620, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4620, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(385, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(462, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(770, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(924, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1155, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1540, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2310, [\chi])\)\(^{\oplus 2}\)