Properties

Label 4620.2.be
Level $4620$
Weight $2$
Character orbit 4620.be
Rep. character $\chi_{4620}(3541,\cdot)$
Character field $\Q$
Dimension $64$
Newform subspaces $5$
Sturm bound $2304$
Trace bound $23$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4620 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4620.be (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(2304\)
Trace bound: \(23\)
Distinguishing \(T_p\): \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4620, [\chi])\).

Total New Old
Modular forms 1176 64 1112
Cusp forms 1128 64 1064
Eisenstein series 48 0 48

Trace form

\( 64 q - 64 q^{9} + 8 q^{11} - 64 q^{25} + 16 q^{37} - 32 q^{49} + 48 q^{53} - 16 q^{67} + 48 q^{71} + 32 q^{77} + 64 q^{81} + 48 q^{91} + 32 q^{93} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(4620, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
4620.2.be.a 4620.be 77.b $4$ $36.891$ \(\Q(i, \sqrt{7})\) None 4620.2.be.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}-\beta _{1}q^{5}-\beta _{3}q^{7}-q^{9}+(2+\cdots)q^{11}+\cdots\)
4620.2.be.b 4620.be 77.b $4$ $36.891$ \(\Q(i, \sqrt{7})\) None 4620.2.be.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+\beta _{1}q^{5}-\beta _{2}q^{7}-q^{9}+(2+\cdots)q^{11}+\cdots\)
4620.2.be.c 4620.be 77.b $12$ $36.891$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 4620.2.be.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{7}q^{3}+\beta _{7}q^{5}+\beta _{8}q^{7}-q^{9}+(-1+\cdots)q^{11}+\cdots\)
4620.2.be.d 4620.be 77.b $12$ $36.891$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 4620.2.be.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{10}q^{3}+\beta _{10}q^{5}+(-\beta _{3}+\beta _{4})q^{7}+\cdots\)
4620.2.be.e 4620.be 77.b $32$ $36.891$ None 4620.2.be.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(4620, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4620, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(385, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(462, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(770, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(924, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1155, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1540, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2310, [\chi])\)\(^{\oplus 2}\)