Properties

Label 451.2.h.a.59.14
Level $451$
Weight $2$
Character 451.59
Analytic conductor $3.601$
Analytic rank $0$
Dimension $160$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [451,2,Mod(59,451)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(451, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("451.59");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 451 = 11 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 451.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.60125313116\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(40\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 59.14
Character \(\chi\) \(=\) 451.59
Dual form 451.2.h.a.344.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.343347 + 1.05671i) q^{2} +(0.00286704 - 0.00882385i) q^{3} +(0.619281 + 0.449934i) q^{4} +(-0.934433 + 2.87589i) q^{5} +(0.00833988 + 0.00605928i) q^{6} -0.743893 q^{7} +(-2.48586 + 1.80609i) q^{8} +(2.42698 + 1.76331i) q^{9} +O(q^{10})\) \(q+(-0.343347 + 1.05671i) q^{2} +(0.00286704 - 0.00882385i) q^{3} +(0.619281 + 0.449934i) q^{4} +(-0.934433 + 2.87589i) q^{5} +(0.00833988 + 0.00605928i) q^{6} -0.743893 q^{7} +(-2.48586 + 1.80609i) q^{8} +(2.42698 + 1.76331i) q^{9} +(-2.71815 - 1.97485i) q^{10} +(1.05100 + 3.14569i) q^{11} +(0.00574565 - 0.00417446i) q^{12} +(2.06641 - 6.35976i) q^{13} +(0.255413 - 0.786080i) q^{14} +(0.0226974 + 0.0164906i) q^{15} +(-0.581912 - 1.79094i) q^{16} -5.40748 q^{17} +(-2.69660 + 1.95920i) q^{18} +(-3.47796 - 2.52689i) q^{19} +(-1.87264 + 1.36055i) q^{20} +(-0.00213277 + 0.00656400i) q^{21} +(-3.68495 + 0.0305451i) q^{22} +(0.647654 + 1.99327i) q^{23} +(0.00880955 + 0.0271130i) q^{24} +(-3.35249 - 2.43573i) q^{25} +(6.01094 + 4.36720i) q^{26} +(0.0450355 - 0.0327202i) q^{27} +(-0.460678 - 0.334702i) q^{28} +(4.34299 + 3.15537i) q^{29} +(-0.0252189 + 0.0183226i) q^{30} +(1.39831 + 4.30356i) q^{31} -4.05309 q^{32} +(0.0307704 - 0.000255060i) q^{33} +(1.85664 - 5.71415i) q^{34} +(0.695118 - 2.13935i) q^{35} +(0.709612 + 2.18396i) q^{36} +(1.37402 + 0.998281i) q^{37} +(3.86434 - 2.80760i) q^{38} +(-0.0501931 - 0.0364674i) q^{39} +(-2.87123 - 8.83674i) q^{40} +(0.890291 - 6.34093i) q^{41} +(-0.00620398 - 0.00450745i) q^{42} +(3.20588 + 9.86668i) q^{43} +(-0.764487 + 2.42095i) q^{44} +(-7.33892 + 5.33204i) q^{45} -2.32869 q^{46} +2.27868 q^{47} -0.0174714 q^{48} -6.44662 q^{49} +(3.72493 - 2.70632i) q^{50} +(-0.0155035 + 0.0477148i) q^{51} +(4.14116 - 3.00873i) q^{52} -12.6338 q^{53} +(0.0191130 + 0.0588239i) q^{54} +(-10.0288 + 0.0831299i) q^{55} +(1.84922 - 1.34353i) q^{56} +(-0.0322683 + 0.0234443i) q^{57} +(-4.82547 + 3.50591i) q^{58} +(9.13221 - 6.63494i) q^{59} +(0.00663636 + 0.0204246i) q^{60} +(0.304784 + 0.938029i) q^{61} -5.02773 q^{62} +(-1.80541 - 1.31171i) q^{63} +(2.55544 - 7.86483i) q^{64} +(16.3590 + 11.8855i) q^{65} +(-0.0102954 + 0.0326030i) q^{66} +(6.43898 - 4.67820i) q^{67} +(-3.34875 - 2.43301i) q^{68} +0.0194452 q^{69} +(2.02201 + 1.46908i) q^{70} +12.0814 q^{71} -9.21783 q^{72} +(2.11289 + 6.50280i) q^{73} +(-1.52666 + 1.10918i) q^{74} +(-0.0311042 + 0.0225985i) q^{75} +(-1.01690 - 3.12970i) q^{76} +(-0.781834 - 2.34006i) q^{77} +(0.0557691 - 0.0405186i) q^{78} +(7.49837 + 5.44788i) q^{79} +5.69430 q^{80} +(2.78091 + 8.55877i) q^{81} +(6.39486 + 3.11792i) q^{82} +(5.00198 - 3.63415i) q^{83} +(-0.00427415 + 0.00310535i) q^{84} +(5.05293 - 15.5513i) q^{85} -11.5270 q^{86} +(0.0402941 - 0.0292754i) q^{87} +(-8.29405 - 5.92156i) q^{88} +(2.33736 - 7.19365i) q^{89} +(-3.11464 - 9.58587i) q^{90} +(-1.53719 + 4.73098i) q^{91} +(-0.495762 + 1.52580i) q^{92} +0.0419830 q^{93} +(-0.782378 + 2.40791i) q^{94} +(10.5170 - 7.64102i) q^{95} +(-0.0116204 + 0.0357639i) q^{96} -1.93889 q^{97} +(2.21343 - 6.81222i) q^{98} +(-2.99605 + 9.48778i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q + q^{2} - 7 q^{3} - 39 q^{4} - q^{5} - 4 q^{6} - 6 q^{7} + 3 q^{8} - 45 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 160 q + q^{2} - 7 q^{3} - 39 q^{4} - q^{5} - 4 q^{6} - 6 q^{7} + 3 q^{8} - 45 q^{9} + 12 q^{10} + 7 q^{12} - 14 q^{13} - 10 q^{14} + 19 q^{15} - 41 q^{16} + 10 q^{17} + 9 q^{18} + 12 q^{19} + 23 q^{20} + 11 q^{21} + 35 q^{22} + 5 q^{23} + 46 q^{24} - 39 q^{25} + 5 q^{26} + 11 q^{27} - 33 q^{28} - 4 q^{29} + 6 q^{30} + 2 q^{31} - 28 q^{32} - 34 q^{33} - 29 q^{34} + 24 q^{35} - 17 q^{36} - q^{37} - 69 q^{38} + 19 q^{39} + 33 q^{40} - 33 q^{41} + 46 q^{42} - 7 q^{43} + 20 q^{44} - 53 q^{45} - 46 q^{46} - 56 q^{47} - 6 q^{48} + 118 q^{49} + 13 q^{50} + 21 q^{51} + 81 q^{52} + 2 q^{53} + 69 q^{54} - 75 q^{55} + 11 q^{56} - 52 q^{57} + q^{58} + 35 q^{59} + 17 q^{60} + 7 q^{61} - 62 q^{62} - 2 q^{63} - 89 q^{64} - 41 q^{65} - 48 q^{66} - 43 q^{67} + 11 q^{68} - 30 q^{69} + 3 q^{70} + 54 q^{71} + 6 q^{72} - 30 q^{73} - 74 q^{74} + 57 q^{75} - 62 q^{76} - 17 q^{77} + 50 q^{78} - 22 q^{79} + 94 q^{80} - 58 q^{81} + 55 q^{82} + 22 q^{83} - 169 q^{84} + 6 q^{85} + 90 q^{86} + 46 q^{87} + 110 q^{88} - 13 q^{89} + 130 q^{90} + 54 q^{91} + 18 q^{92} - 70 q^{93} - 209 q^{94} + 7 q^{95} + 94 q^{96} + 64 q^{97} + 35 q^{98} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/451\mathbb{Z}\right)^\times\).

\(n\) \(288\) \(375\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.343347 + 1.05671i −0.242783 + 0.747208i 0.753211 + 0.657779i \(0.228504\pi\)
−0.995993 + 0.0894287i \(0.971496\pi\)
\(3\) 0.00286704 0.00882385i 0.00165529 0.00509445i −0.950225 0.311563i \(-0.899147\pi\)
0.951881 + 0.306469i \(0.0991475\pi\)
\(4\) 0.619281 + 0.449934i 0.309640 + 0.224967i
\(5\) −0.934433 + 2.87589i −0.417891 + 1.28614i 0.491748 + 0.870738i \(0.336358\pi\)
−0.909639 + 0.415399i \(0.863642\pi\)
\(6\) 0.00833988 + 0.00605928i 0.00340474 + 0.00247369i
\(7\) −0.743893 −0.281165 −0.140583 0.990069i \(-0.544898\pi\)
−0.140583 + 0.990069i \(0.544898\pi\)
\(8\) −2.48586 + 1.80609i −0.878886 + 0.638548i
\(9\) 2.42698 + 1.76331i 0.808994 + 0.587768i
\(10\) −2.71815 1.97485i −0.859555 0.624504i
\(11\) 1.05100 + 3.14569i 0.316890 + 0.948462i
\(12\) 0.00574565 0.00417446i 0.00165863 0.00120506i
\(13\) 2.06641 6.35976i 0.573119 1.76388i −0.0693777 0.997590i \(-0.522101\pi\)
0.642497 0.766288i \(-0.277899\pi\)
\(14\) 0.255413 0.786080i 0.0682620 0.210089i
\(15\) 0.0226974 + 0.0164906i 0.00586043 + 0.00425785i
\(16\) −0.581912 1.79094i −0.145478 0.447735i
\(17\) −5.40748 −1.31151 −0.655753 0.754976i \(-0.727649\pi\)
−0.655753 + 0.754976i \(0.727649\pi\)
\(18\) −2.69660 + 1.95920i −0.635595 + 0.461787i
\(19\) −3.47796 2.52689i −0.797899 0.579707i 0.112398 0.993663i \(-0.464147\pi\)
−0.910297 + 0.413956i \(0.864147\pi\)
\(20\) −1.87264 + 1.36055i −0.418734 + 0.304228i
\(21\) −0.00213277 + 0.00656400i −0.000465409 + 0.00143238i
\(22\) −3.68495 + 0.0305451i −0.785634 + 0.00651224i
\(23\) 0.647654 + 1.99327i 0.135045 + 0.415627i 0.995597 0.0937364i \(-0.0298811\pi\)
−0.860552 + 0.509363i \(0.829881\pi\)
\(24\) 0.00880955 + 0.0271130i 0.00179824 + 0.00553442i
\(25\) −3.35249 2.43573i −0.670498 0.487145i
\(26\) 6.01094 + 4.36720i 1.17884 + 0.856478i
\(27\) 0.0450355 0.0327202i 0.00866708 0.00629700i
\(28\) −0.460678 0.334702i −0.0870600 0.0632528i
\(29\) 4.34299 + 3.15537i 0.806474 + 0.585938i 0.912806 0.408393i \(-0.133911\pi\)
−0.106332 + 0.994331i \(0.533911\pi\)
\(30\) −0.0252189 + 0.0183226i −0.00460432 + 0.00334523i
\(31\) 1.39831 + 4.30356i 0.251144 + 0.772942i 0.994565 + 0.104118i \(0.0332020\pi\)
−0.743421 + 0.668824i \(0.766798\pi\)
\(32\) −4.05309 −0.716492
\(33\) 0.0307704 0.000255060i 0.00535644 4.44003e-5i
\(34\) 1.85664 5.71415i 0.318411 0.979968i
\(35\) 0.695118 2.13935i 0.117496 0.361617i
\(36\) 0.709612 + 2.18396i 0.118269 + 0.363994i
\(37\) 1.37402 + 0.998281i 0.225887 + 0.164116i 0.694973 0.719036i \(-0.255416\pi\)
−0.469086 + 0.883153i \(0.655416\pi\)
\(38\) 3.86434 2.80760i 0.626878 0.455453i
\(39\) −0.0501931 0.0364674i −0.00803732 0.00583946i
\(40\) −2.87123 8.83674i −0.453981 1.39721i
\(41\) 0.890291 6.34093i 0.139040 0.990287i
\(42\) −0.00620398 0.00450745i −0.000957294 0.000695515i
\(43\) 3.20588 + 9.86668i 0.488892 + 1.50465i 0.826264 + 0.563283i \(0.190462\pi\)
−0.337372 + 0.941371i \(0.609538\pi\)
\(44\) −0.764487 + 2.42095i −0.115251 + 0.364972i
\(45\) −7.33892 + 5.33204i −1.09402 + 0.794854i
\(46\) −2.32869 −0.343346
\(47\) 2.27868 0.332380 0.166190 0.986094i \(-0.446853\pi\)
0.166190 + 0.986094i \(0.446853\pi\)
\(48\) −0.0174714 −0.00252177
\(49\) −6.44662 −0.920946
\(50\) 3.72493 2.70632i 0.526784 0.382731i
\(51\) −0.0155035 + 0.0477148i −0.00217092 + 0.00668140i
\(52\) 4.14116 3.00873i 0.574275 0.417235i
\(53\) −12.6338 −1.73538 −0.867690 0.497106i \(-0.834396\pi\)
−0.867690 + 0.497106i \(0.834396\pi\)
\(54\) 0.0191130 + 0.0588239i 0.00260095 + 0.00800491i
\(55\) −10.0288 + 0.0831299i −1.35228 + 0.0112092i
\(56\) 1.84922 1.34353i 0.247112 0.179537i
\(57\) −0.0322683 + 0.0234443i −0.00427404 + 0.00310527i
\(58\) −4.82547 + 3.50591i −0.633615 + 0.460348i
\(59\) 9.13221 6.63494i 1.18891 0.863795i 0.195764 0.980651i \(-0.437281\pi\)
0.993149 + 0.116856i \(0.0372815\pi\)
\(60\) 0.00663636 + 0.0204246i 0.000856750 + 0.00263681i
\(61\) 0.304784 + 0.938029i 0.0390236 + 0.120102i 0.968671 0.248349i \(-0.0798881\pi\)
−0.929647 + 0.368452i \(0.879888\pi\)
\(62\) −5.02773 −0.638522
\(63\) −1.80541 1.31171i −0.227461 0.165260i
\(64\) 2.55544 7.86483i 0.319430 0.983103i
\(65\) 16.3590 + 11.8855i 2.02909 + 1.47422i
\(66\) −0.0102954 + 0.0326030i −0.00126727 + 0.00401316i
\(67\) 6.43898 4.67820i 0.786647 0.571533i −0.120320 0.992735i \(-0.538392\pi\)
0.906967 + 0.421203i \(0.138392\pi\)
\(68\) −3.34875 2.43301i −0.406095 0.295045i
\(69\) 0.0194452 0.00234093
\(70\) 2.02201 + 1.46908i 0.241677 + 0.175589i
\(71\) 12.0814 1.43380 0.716902 0.697174i \(-0.245560\pi\)
0.716902 + 0.697174i \(0.245560\pi\)
\(72\) −9.21783 −1.08633
\(73\) 2.11289 + 6.50280i 0.247295 + 0.761095i 0.995251 + 0.0973463i \(0.0310354\pi\)
−0.747956 + 0.663748i \(0.768965\pi\)
\(74\) −1.52666 + 1.10918i −0.177471 + 0.128940i
\(75\) −0.0311042 + 0.0225985i −0.00359161 + 0.00260946i
\(76\) −1.01690 3.12970i −0.116647 0.359001i
\(77\) −0.781834 2.34006i −0.0890983 0.266675i
\(78\) 0.0557691 0.0405186i 0.00631461 0.00458783i
\(79\) 7.49837 + 5.44788i 0.843632 + 0.612935i 0.923383 0.383880i \(-0.125412\pi\)
−0.0797506 + 0.996815i \(0.525412\pi\)
\(80\) 5.69430 0.636642
\(81\) 2.78091 + 8.55877i 0.308990 + 0.950975i
\(82\) 6.39486 + 3.11792i 0.706194 + 0.344316i
\(83\) 5.00198 3.63415i 0.549039 0.398900i −0.278392 0.960467i \(-0.589801\pi\)
0.827431 + 0.561567i \(0.189801\pi\)
\(84\) −0.00427415 + 0.00310535i −0.000466348 + 0.000338822i
\(85\) 5.05293 15.5513i 0.548067 1.68678i
\(86\) −11.5270 −1.24298
\(87\) 0.0402941 0.0292754i 0.00431998 0.00313865i
\(88\) −8.29405 5.92156i −0.884148 0.631241i
\(89\) 2.33736 7.19365i 0.247759 0.762525i −0.747411 0.664362i \(-0.768703\pi\)
0.995170 0.0981632i \(-0.0312967\pi\)
\(90\) −3.11464 9.58587i −0.328312 1.01044i
\(91\) −1.53719 + 4.73098i −0.161141 + 0.495941i
\(92\) −0.495762 + 1.52580i −0.0516867 + 0.159075i
\(93\) 0.0419830 0.00435343
\(94\) −0.782378 + 2.40791i −0.0806962 + 0.248357i
\(95\) 10.5170 7.64102i 1.07902 0.783952i
\(96\) −0.0116204 + 0.0357639i −0.00118600 + 0.00365013i
\(97\) −1.93889 −0.196864 −0.0984321 0.995144i \(-0.531383\pi\)
−0.0984321 + 0.995144i \(0.531383\pi\)
\(98\) 2.21343 6.81222i 0.223590 0.688139i
\(99\) −2.99605 + 9.48778i −0.301115 + 0.953558i
\(100\) −0.980217 3.01680i −0.0980217 0.301680i
\(101\) −6.42457 + 4.66772i −0.639269 + 0.464456i −0.859599 0.510969i \(-0.829287\pi\)
0.220330 + 0.975425i \(0.429287\pi\)
\(102\) −0.0450977 0.0327654i −0.00446534 0.00324426i
\(103\) 5.36853 0.528977 0.264488 0.964389i \(-0.414797\pi\)
0.264488 + 0.964389i \(0.414797\pi\)
\(104\) 6.34945 + 19.5416i 0.622615 + 1.91621i
\(105\) −0.0168844 0.0122672i −0.00164775 0.00119716i
\(106\) 4.33775 13.3502i 0.421320 1.29669i
\(107\) 2.28777 + 1.66216i 0.221167 + 0.160687i 0.692852 0.721080i \(-0.256354\pi\)
−0.471685 + 0.881767i \(0.656354\pi\)
\(108\) 0.0426115 0.00410029
\(109\) 11.6695 1.11774 0.558869 0.829256i \(-0.311235\pi\)
0.558869 + 0.829256i \(0.311235\pi\)
\(110\) 3.35550 10.6261i 0.319934 1.01315i
\(111\) 0.0127481 0.00926200i 0.00120999 0.000879110i
\(112\) 0.432880 + 1.33227i 0.0409033 + 0.125887i
\(113\) −1.88326 + 1.36827i −0.177162 + 0.128716i −0.672832 0.739795i \(-0.734923\pi\)
0.495670 + 0.868511i \(0.334923\pi\)
\(114\) −0.0136947 0.0421478i −0.00128262 0.00394751i
\(115\) −6.33763 −0.590987
\(116\) 1.26982 + 3.90812i 0.117900 + 0.362860i
\(117\) 16.2293 11.7913i 1.50040 1.09011i
\(118\) 3.87571 + 11.9282i 0.356788 + 1.09808i
\(119\) 4.02258 0.368750
\(120\) −0.0862060 −0.00786949
\(121\) −8.79078 + 6.61227i −0.799162 + 0.601116i
\(122\) −1.09587 −0.0992157
\(123\) −0.0533989 0.0260355i −0.00481482 0.00234754i
\(124\) −1.07037 + 3.29426i −0.0961220 + 0.295833i
\(125\) −2.09433 + 1.52162i −0.187322 + 0.136098i
\(126\) 2.00598 1.45743i 0.178707 0.129838i
\(127\) 2.38688 7.34605i 0.211801 0.651856i −0.787564 0.616232i \(-0.788658\pi\)
0.999365 0.0356239i \(-0.0113418\pi\)
\(128\) 0.875421 + 0.636031i 0.0773770 + 0.0562177i
\(129\) 0.0962535 0.00847465
\(130\) −18.1764 + 13.2059i −1.59418 + 1.15824i
\(131\) 14.8687 + 10.8028i 1.29909 + 0.943843i 0.999946 0.0103660i \(-0.00329965\pi\)
0.299142 + 0.954209i \(0.403300\pi\)
\(132\) 0.0191703 + 0.0136867i 0.00166856 + 0.00119127i
\(133\) 2.58723 + 1.87973i 0.224341 + 0.162993i
\(134\) 2.73270 + 8.41039i 0.236070 + 0.726547i
\(135\) 0.0520170 + 0.160092i 0.00447691 + 0.0137785i
\(136\) 13.4423 9.76637i 1.15266 0.837459i
\(137\) 7.15486 5.19831i 0.611281 0.444122i −0.238584 0.971122i \(-0.576683\pi\)
0.849865 + 0.527000i \(0.176683\pi\)
\(138\) −0.00667645 + 0.0205480i −0.000568337 + 0.00174916i
\(139\) 6.28717 0.533271 0.266635 0.963797i \(-0.414088\pi\)
0.266635 + 0.963797i \(0.414088\pi\)
\(140\) 1.39304 1.01210i 0.117733 0.0855383i
\(141\) 0.00653309 0.0201068i 0.000550185 0.00169330i
\(142\) −4.14812 + 12.7666i −0.348103 + 1.07135i
\(143\) 22.1777 0.183834i 1.85459 0.0153730i
\(144\) 1.74568 5.37267i 0.145474 0.447722i
\(145\) −13.1327 + 9.54149i −1.09061 + 0.792378i
\(146\) −7.59703 −0.628735
\(147\) −0.0184827 + 0.0568840i −0.00152443 + 0.00469172i
\(148\) 0.401741 + 1.23643i 0.0330229 + 0.101634i
\(149\) −3.49826 + 10.7665i −0.286589 + 0.882029i 0.699329 + 0.714799i \(0.253482\pi\)
−0.985918 + 0.167229i \(0.946518\pi\)
\(150\) −0.0132006 0.0406273i −0.00107783 0.00331721i
\(151\) −9.23680 −0.751680 −0.375840 0.926685i \(-0.622646\pi\)
−0.375840 + 0.926685i \(0.622646\pi\)
\(152\) 13.2095 1.07143
\(153\) −13.1238 9.53503i −1.06100 0.770862i
\(154\) 2.74121 0.0227223i 0.220893 0.00183101i
\(155\) −13.6832 −1.09906
\(156\) −0.0146757 0.0451671i −0.00117499 0.00361626i
\(157\) 2.18413 + 1.58686i 0.174313 + 0.126646i 0.671521 0.740986i \(-0.265641\pi\)
−0.497208 + 0.867631i \(0.665641\pi\)
\(158\) −8.33138 + 6.05310i −0.662809 + 0.481559i
\(159\) −0.0362215 + 0.111478i −0.00287255 + 0.00884081i
\(160\) 3.78734 11.6562i 0.299416 0.921506i
\(161\) −0.481785 1.48278i −0.0379700 0.116860i
\(162\) −9.99897 −0.785594
\(163\) 1.36433 + 0.991247i 0.106863 + 0.0776405i 0.639933 0.768430i \(-0.278962\pi\)
−0.533070 + 0.846071i \(0.678962\pi\)
\(164\) 3.40434 3.52624i 0.265834 0.275353i
\(165\) −0.0280194 + 0.0887306i −0.00218130 + 0.00690767i
\(166\) 2.12284 + 6.53343i 0.164764 + 0.507092i
\(167\) −9.91464 7.20341i −0.767218 0.557416i 0.133898 0.990995i \(-0.457251\pi\)
−0.901116 + 0.433579i \(0.857251\pi\)
\(168\) −0.00655336 0.0201692i −0.000505603 0.00155609i
\(169\) −25.6592 18.6425i −1.97379 1.43404i
\(170\) 14.6983 + 10.6790i 1.12731 + 0.819040i
\(171\) −3.98527 12.2654i −0.304761 0.937959i
\(172\) −2.45401 + 7.55267i −0.187117 + 0.575886i
\(173\) −3.27020 + 10.0646i −0.248628 + 0.765199i 0.746390 + 0.665509i \(0.231785\pi\)
−0.995018 + 0.0996907i \(0.968215\pi\)
\(174\) 0.0171008 + 0.0526308i 0.00129641 + 0.00398993i
\(175\) 2.49389 + 1.81192i 0.188521 + 0.136968i
\(176\) 5.02216 3.71280i 0.378559 0.279863i
\(177\) −0.0323633 0.0996039i −0.00243257 0.00748669i
\(178\) 6.79909 + 4.93983i 0.509613 + 0.370256i
\(179\) 0.375416 + 1.15541i 0.0280599 + 0.0863595i 0.964106 0.265519i \(-0.0855432\pi\)
−0.936046 + 0.351878i \(0.885543\pi\)
\(180\) −6.94392 −0.517569
\(181\) −1.99109 −0.147996 −0.0739982 0.997258i \(-0.523576\pi\)
−0.0739982 + 0.997258i \(0.523576\pi\)
\(182\) −4.47149 3.24873i −0.331449 0.240812i
\(183\) 0.00915086 0.000676451
\(184\) −5.21001 3.78529i −0.384087 0.279055i
\(185\) −4.15487 + 3.01869i −0.305472 + 0.221939i
\(186\) −0.0144147 + 0.0443639i −0.00105694 + 0.00325292i
\(187\) −5.68328 17.0103i −0.415603 1.24391i
\(188\) 1.41114 + 1.02526i 0.102918 + 0.0747745i
\(189\) −0.0335015 + 0.0243403i −0.00243688 + 0.00177050i
\(190\) 4.46340 + 13.7369i 0.323809 + 0.996581i
\(191\) 2.93018 + 9.01816i 0.212020 + 0.652531i 0.999352 + 0.0360014i \(0.0114621\pi\)
−0.787331 + 0.616530i \(0.788538\pi\)
\(192\) −0.0620715 0.0450976i −0.00447963 0.00325464i
\(193\) 7.27598 22.3932i 0.523737 1.61190i −0.243063 0.970010i \(-0.578152\pi\)
0.766800 0.641886i \(-0.221848\pi\)
\(194\) 0.665711 2.04885i 0.0477952 0.147099i
\(195\) 0.151778 0.110273i 0.0108691 0.00789684i
\(196\) −3.99227 2.90055i −0.285162 0.207182i
\(197\) −15.3242 11.1337i −1.09180 0.793241i −0.112100 0.993697i \(-0.535758\pi\)
−0.979703 + 0.200456i \(0.935758\pi\)
\(198\) −8.99717 6.42356i −0.639401 0.456503i
\(199\) 0.197630 + 0.608242i 0.0140096 + 0.0431171i 0.957817 0.287379i \(-0.0927839\pi\)
−0.943807 + 0.330496i \(0.892784\pi\)
\(200\) 12.7330 0.900357
\(201\) −0.0228189 0.0702292i −0.00160952 0.00495359i
\(202\) −2.72659 8.39157i −0.191842 0.590429i
\(203\) −3.23072 2.34726i −0.226752 0.164745i
\(204\) −0.0310695 + 0.0225733i −0.00217530 + 0.00158045i
\(205\) 17.4039 + 8.48555i 1.21554 + 0.592657i
\(206\) −1.84327 + 5.67299i −0.128426 + 0.395256i
\(207\) −1.94291 + 5.97965i −0.135041 + 0.415615i
\(208\) −12.5924 −0.873126
\(209\) 4.29346 13.5964i 0.296985 0.940480i
\(210\) 0.0187601 0.0136300i 0.00129457 0.000940562i
\(211\) −0.843079 + 2.59473i −0.0580400 + 0.178629i −0.975873 0.218337i \(-0.929937\pi\)
0.917833 + 0.396966i \(0.129937\pi\)
\(212\) −7.82384 5.68435i −0.537343 0.390403i
\(213\) 0.0346380 0.106605i 0.00237336 0.00730445i
\(214\) −2.54193 + 1.84682i −0.173762 + 0.126246i
\(215\) −31.3712 −2.13949
\(216\) −0.0528566 + 0.162676i −0.00359643 + 0.0110687i
\(217\) −1.04019 3.20139i −0.0706129 0.217324i
\(218\) −4.00669 + 12.3313i −0.271368 + 0.835183i
\(219\) 0.0634374 0.00428671
\(220\) −6.24802 4.46080i −0.421241 0.300747i
\(221\) −11.1741 + 34.3902i −0.751649 + 2.31334i
\(222\) 0.00541027 + 0.0166511i 0.000363113 + 0.00111755i
\(223\) 16.8093 1.12563 0.562815 0.826583i \(-0.309718\pi\)
0.562815 + 0.826583i \(0.309718\pi\)
\(224\) 3.01506 0.201452
\(225\) −3.84150 11.8229i −0.256100 0.788195i
\(226\) −0.799256 2.45986i −0.0531657 0.163627i
\(227\) −9.69217 −0.643292 −0.321646 0.946860i \(-0.604236\pi\)
−0.321646 + 0.946860i \(0.604236\pi\)
\(228\) −0.0305315 −0.00202200
\(229\) 1.51483 + 4.66216i 0.100103 + 0.308084i 0.988550 0.150895i \(-0.0482154\pi\)
−0.888447 + 0.458979i \(0.848215\pi\)
\(230\) 2.17600 6.69705i 0.143481 0.441590i
\(231\) −0.0228899 0.000189738i −0.00150604 1.24838e-5i
\(232\) −16.4950 −1.08295
\(233\) 8.41962 25.9129i 0.551588 1.69761i −0.153201 0.988195i \(-0.548958\pi\)
0.704789 0.709417i \(-0.251042\pi\)
\(234\) 6.88772 + 21.1982i 0.450264 + 1.38577i
\(235\) −2.12928 + 6.55324i −0.138899 + 0.427486i
\(236\) 8.64068 0.562461
\(237\) 0.0695695 0.0505452i 0.00451902 0.00328326i
\(238\) −1.38114 + 4.25071i −0.0895260 + 0.275533i
\(239\) −20.4107 14.8292i −1.32026 0.959222i −0.999929 0.0119156i \(-0.996207\pi\)
−0.320327 0.947307i \(-0.603793\pi\)
\(240\) 0.0163258 0.0502457i 0.00105383 0.00324334i
\(241\) 6.82596 4.95935i 0.439699 0.319460i −0.345816 0.938302i \(-0.612398\pi\)
0.785515 + 0.618842i \(0.212398\pi\)
\(242\) −3.96898 11.5596i −0.255136 0.743081i
\(243\) 0.250495 0.0160693
\(244\) −0.233304 + 0.718036i −0.0149358 + 0.0459675i
\(245\) 6.02394 18.5398i 0.384855 1.18446i
\(246\) 0.0458464 0.0474881i 0.00292306 0.00302773i
\(247\) −23.2573 + 16.8974i −1.47982 + 1.07516i
\(248\) −11.2486 8.17259i −0.714287 0.518960i
\(249\) −0.0177263 0.0545560i −0.00112336 0.00345735i
\(250\) −0.888832 2.73554i −0.0562147 0.173011i
\(251\) −25.0063 −1.57839 −0.789193 0.614145i \(-0.789501\pi\)
−0.789193 + 0.614145i \(0.789501\pi\)
\(252\) −0.527875 1.62463i −0.0332530 0.102342i
\(253\) −5.58955 + 4.13226i −0.351412 + 0.259793i
\(254\) 6.94313 + 5.04448i 0.435651 + 0.316519i
\(255\) −0.122735 0.0891725i −0.00768599 0.00558420i
\(256\) 12.4078 9.01477i 0.775486 0.563423i
\(257\) −0.837439 + 2.57737i −0.0522380 + 0.160772i −0.973772 0.227525i \(-0.926937\pi\)
0.921534 + 0.388297i \(0.126937\pi\)
\(258\) −0.0330483 + 0.101712i −0.00205750 + 0.00633232i
\(259\) −1.02212 0.742614i −0.0635115 0.0461438i
\(260\) 4.78313 + 14.7210i 0.296637 + 0.912955i
\(261\) 4.97649 + 15.3160i 0.308037 + 0.948040i
\(262\) −16.5206 + 12.0029i −1.02064 + 0.741541i
\(263\) 25.7457 + 18.7054i 1.58755 + 1.15342i 0.907336 + 0.420407i \(0.138113\pi\)
0.680213 + 0.733015i \(0.261887\pi\)
\(264\) −0.0760304 + 0.0562080i −0.00467935 + 0.00345937i
\(265\) 11.8054 36.3333i 0.725200 2.23194i
\(266\) −2.87465 + 2.08856i −0.176256 + 0.128058i
\(267\) −0.0567744 0.0412490i −0.00347454 0.00252440i
\(268\) 6.09241 0.372153
\(269\) 14.0286 + 10.1923i 0.855336 + 0.621438i 0.926612 0.376019i \(-0.122707\pi\)
−0.0712761 + 0.997457i \(0.522707\pi\)
\(270\) −0.187031 −0.0113823
\(271\) 3.19636 0.194165 0.0970826 0.995276i \(-0.469049\pi\)
0.0970826 + 0.995276i \(0.469049\pi\)
\(272\) 3.14667 + 9.68447i 0.190795 + 0.587207i
\(273\) 0.0373383 + 0.0271278i 0.00225981 + 0.00164185i
\(274\) 3.03652 + 9.34545i 0.183443 + 0.564579i
\(275\) 4.13857 13.1059i 0.249565 0.790314i
\(276\) 0.0120420 + 0.00874906i 0.000724846 + 0.000526631i
\(277\) −2.67127 8.22133i −0.160501 0.493972i 0.838175 0.545401i \(-0.183623\pi\)
−0.998677 + 0.0514287i \(0.983623\pi\)
\(278\) −2.15868 + 6.64373i −0.129469 + 0.398464i
\(279\) −4.19481 + 12.9103i −0.251137 + 0.772920i
\(280\) 2.13589 + 6.57359i 0.127644 + 0.392847i
\(281\) 6.23806 + 4.53221i 0.372131 + 0.270369i 0.758094 0.652145i \(-0.226131\pi\)
−0.385963 + 0.922514i \(0.626131\pi\)
\(282\) 0.0190040 + 0.0138072i 0.00113167 + 0.000822206i
\(283\) 3.49287 + 10.7499i 0.207629 + 0.639017i 0.999595 + 0.0284519i \(0.00905775\pi\)
−0.791966 + 0.610565i \(0.790942\pi\)
\(284\) 7.48180 + 5.43585i 0.443963 + 0.322558i
\(285\) −0.0372706 0.114707i −0.00220772 0.00679467i
\(286\) −7.42036 + 23.4985i −0.438775 + 1.38950i
\(287\) −0.662281 + 4.71697i −0.0390932 + 0.278434i
\(288\) −9.83677 7.14683i −0.579637 0.421131i
\(289\) 12.2408 0.720048
\(290\) −5.57353 17.1536i −0.327289 1.00729i
\(291\) −0.00555888 + 0.0171085i −0.000325867 + 0.00100292i
\(292\) −1.61736 + 4.97771i −0.0946487 + 0.291299i
\(293\) −12.5999 + 9.15440i −0.736097 + 0.534806i −0.891486 0.453048i \(-0.850337\pi\)
0.155390 + 0.987853i \(0.450337\pi\)
\(294\) −0.0537641 0.0390619i −0.00313558 0.00227814i
\(295\) 10.5479 + 32.4631i 0.614123 + 1.89008i
\(296\) −5.21860 −0.303325
\(297\) 0.150260 + 0.107279i 0.00871897 + 0.00622494i
\(298\) −10.1760 7.39331i −0.589481 0.428283i
\(299\) 14.0151 0.810512
\(300\) −0.0294301 −0.00169915
\(301\) −2.38483 7.33975i −0.137459 0.423056i
\(302\) 3.17142 9.76064i 0.182495 0.561661i
\(303\) 0.0227678 + 0.0700720i 0.00130797 + 0.00402553i
\(304\) −2.50163 + 7.69924i −0.143479 + 0.441582i
\(305\) −2.98247 −0.170776
\(306\) 14.5818 10.5943i 0.833587 0.605636i
\(307\) 1.03181 3.17559i 0.0588886 0.181241i −0.917285 0.398231i \(-0.869624\pi\)
0.976174 + 0.216991i \(0.0696241\pi\)
\(308\) 0.568697 1.80093i 0.0324045 0.102617i
\(309\) 0.0153918 0.0473711i 0.000875609 0.00269485i
\(310\) 4.69807 14.4592i 0.266833 0.821227i
\(311\) −3.04680 + 2.21363i −0.172768 + 0.125523i −0.670809 0.741630i \(-0.734053\pi\)
0.498041 + 0.867154i \(0.334053\pi\)
\(312\) 0.190636 0.0107927
\(313\) 9.46304 29.1242i 0.534883 1.64620i −0.209020 0.977911i \(-0.567027\pi\)
0.743903 0.668288i \(-0.232973\pi\)
\(314\) −2.42677 + 1.76315i −0.136951 + 0.0995005i
\(315\) 5.45937 3.96647i 0.307601 0.223485i
\(316\) 2.19241 + 6.74754i 0.123333 + 0.379579i
\(317\) −9.10258 28.0148i −0.511252 1.57347i −0.790000 0.613107i \(-0.789920\pi\)
0.278749 0.960364i \(-0.410080\pi\)
\(318\) −0.105364 0.0765514i −0.00590852 0.00429279i
\(319\) −5.36133 + 16.9780i −0.300177 + 0.950588i
\(320\) 20.2305 + 14.6983i 1.13092 + 0.821661i
\(321\) 0.0212258 0.0154215i 0.00118471 0.000860742i
\(322\) 1.73229 0.0965370
\(323\) 18.8070 + 13.6641i 1.04645 + 0.760289i
\(324\) −2.12871 + 6.55151i −0.118262 + 0.363973i
\(325\) −22.4183 + 16.2878i −1.24354 + 0.903485i
\(326\) −1.51590 + 1.10137i −0.0839581 + 0.0609991i
\(327\) 0.0334571 0.102970i 0.00185018 0.00569427i
\(328\) 9.23912 + 17.3706i 0.510145 + 0.959133i
\(329\) −1.69510 −0.0934537
\(330\) −0.0841424 0.0600738i −0.00463189 0.00330695i
\(331\) −26.9141 −1.47933 −0.739665 0.672975i \(-0.765016\pi\)
−0.739665 + 0.672975i \(0.765016\pi\)
\(332\) 4.73276 0.259744
\(333\) 1.57444 + 4.84562i 0.0862787 + 0.265538i
\(334\) 11.0161 8.00365i 0.602773 0.437940i
\(335\) 7.43717 + 22.8893i 0.406336 + 1.25057i
\(336\) 0.0129968 0.000709034
\(337\) −5.08651 15.6547i −0.277080 0.852764i −0.988662 0.150161i \(-0.952021\pi\)
0.711582 0.702603i \(-0.247979\pi\)
\(338\) 28.5098 20.7136i 1.55073 1.12667i
\(339\) 0.00667401 + 0.0205405i 0.000362483 + 0.00111561i
\(340\) 10.1262 7.35714i 0.549172 0.398997i
\(341\) −12.0680 + 8.92171i −0.653521 + 0.483138i
\(342\) 14.3293 0.774841
\(343\) 10.0028 0.540103
\(344\) −25.7894 18.7371i −1.39047 1.01024i
\(345\) −0.0181703 + 0.0559223i −0.000978254 + 0.00301075i
\(346\) −9.51260 6.91131i −0.511401 0.371554i
\(347\) −6.17903 19.0171i −0.331708 1.02089i −0.968321 0.249708i \(-0.919665\pi\)
0.636613 0.771183i \(-0.280335\pi\)
\(348\) 0.0381253 0.00204373
\(349\) −25.5810 18.5857i −1.36932 0.994869i −0.997790 0.0664479i \(-0.978833\pi\)
−0.371530 0.928421i \(-0.621167\pi\)
\(350\) −2.77095 + 2.01321i −0.148113 + 0.107611i
\(351\) −0.115031 0.354028i −0.00613988 0.0188966i
\(352\) −4.25981 12.7498i −0.227049 0.679565i
\(353\) −5.74781 + 17.6899i −0.305925 + 0.941541i 0.673405 + 0.739274i \(0.264831\pi\)
−0.979330 + 0.202267i \(0.935169\pi\)
\(354\) 0.116364 0.00618470
\(355\) −11.2893 + 34.7449i −0.599174 + 1.84407i
\(356\) 4.68415 3.40323i 0.248259 0.180371i
\(357\) 0.0115329 0.0354947i 0.000610387 0.00187858i
\(358\) −1.34983 −0.0713410
\(359\) 8.16160 25.1188i 0.430753 1.32572i −0.466624 0.884456i \(-0.654530\pi\)
0.897377 0.441265i \(-0.145470\pi\)
\(360\) 8.61344 26.5095i 0.453968 1.39717i
\(361\) −0.160273 0.493268i −0.00843540 0.0259615i
\(362\) 0.683633 2.10401i 0.0359309 0.110584i
\(363\) 0.0331422 + 0.0965262i 0.00173951 + 0.00506631i
\(364\) −3.08058 + 2.23817i −0.161466 + 0.117312i
\(365\) −20.6757 −1.08221
\(366\) −0.00314192 + 0.00966982i −0.000164231 + 0.000505450i
\(367\) 4.17959 3.03665i 0.218173 0.158512i −0.473331 0.880885i \(-0.656949\pi\)
0.691504 + 0.722373i \(0.256949\pi\)
\(368\) 3.19296 2.31982i 0.166444 0.120929i
\(369\) 13.3417 13.8195i 0.694542 0.719412i
\(370\) −1.76333 5.42696i −0.0916710 0.282134i
\(371\) 9.39816 0.487928
\(372\) 0.0259992 + 0.0188896i 0.00134800 + 0.000979378i
\(373\) −17.2489 + 12.5321i −0.893116 + 0.648887i −0.936689 0.350163i \(-0.886126\pi\)
0.0435724 + 0.999050i \(0.486126\pi\)
\(374\) 19.9263 0.165172i 1.03036 0.00854084i
\(375\) 0.00742200 + 0.0228426i 0.000383271 + 0.00117959i
\(376\) −5.66450 + 4.11550i −0.292124 + 0.212241i
\(377\) 29.0418 21.1001i 1.49573 1.08671i
\(378\) −0.0142180 0.0437586i −0.000731297 0.00225070i
\(379\) −31.3156 −1.60858 −0.804288 0.594240i \(-0.797453\pi\)
−0.804288 + 0.594240i \(0.797453\pi\)
\(380\) 9.95090 0.510471
\(381\) −0.0579772 0.0421229i −0.00297026 0.00215802i
\(382\) −10.5357 −0.539052
\(383\) 15.8370 + 11.5063i 0.809234 + 0.587943i 0.913608 0.406595i \(-0.133284\pi\)
−0.104375 + 0.994538i \(0.533284\pi\)
\(384\) 0.00812211 0.00590106i 0.000414480 0.000301137i
\(385\) 7.46032 0.0618397i 0.380213 0.00315164i
\(386\) 21.1650 + 15.3772i 1.07727 + 0.782681i
\(387\) −9.61736 + 29.5992i −0.488878 + 1.50461i
\(388\) −1.20072 0.872371i −0.0609571 0.0442879i
\(389\) 17.5776 0.891218 0.445609 0.895228i \(-0.352987\pi\)
0.445609 + 0.895228i \(0.352987\pi\)
\(390\) 0.0644146 + 0.198248i 0.00326176 + 0.0100387i
\(391\) −3.50218 10.7786i −0.177113 0.545097i
\(392\) 16.0254 11.6432i 0.809406 0.588068i
\(393\) 0.137951 0.100228i 0.00695873 0.00505581i
\(394\) 17.0266 12.3705i 0.857787 0.623219i
\(395\) −22.6742 + 16.4738i −1.14086 + 0.828887i
\(396\) −6.12427 + 4.52757i −0.307756 + 0.227519i
\(397\) 3.93691 + 12.1166i 0.197588 + 0.608113i 0.999937 + 0.0112574i \(0.00358342\pi\)
−0.802349 + 0.596855i \(0.796417\pi\)
\(398\) −0.710592 −0.0356188
\(399\) 0.0240042 0.0174401i 0.00120171 0.000873095i
\(400\) −2.41139 + 7.42149i −0.120569 + 0.371074i
\(401\) 0.293212 0.213031i 0.0146423 0.0106383i −0.580440 0.814303i \(-0.697119\pi\)
0.595082 + 0.803665i \(0.297119\pi\)
\(402\) 0.0820468 0.00409212
\(403\) 30.2591 1.50731
\(404\) −6.07878 −0.302431
\(405\) −27.2127 −1.35221
\(406\) 3.58963 2.60802i 0.178150 0.129434i
\(407\) −1.69619 + 5.37143i −0.0840771 + 0.266252i
\(408\) −0.0476375 0.146613i −0.00235841 0.00725843i
\(409\) 14.5588 + 10.5776i 0.719886 + 0.523028i 0.886348 0.463020i \(-0.153234\pi\)
−0.166462 + 0.986048i \(0.553234\pi\)
\(410\) −14.9424 + 15.4774i −0.737950 + 0.764375i
\(411\) −0.0253558 0.0780372i −0.00125071 0.00384929i
\(412\) 3.32462 + 2.41548i 0.163793 + 0.119002i
\(413\) −6.79339 + 4.93568i −0.334281 + 0.242869i
\(414\) −5.65168 4.10619i −0.277765 0.201808i
\(415\) 5.77740 + 17.7810i 0.283602 + 0.872836i
\(416\) −8.37534 + 25.7767i −0.410635 + 1.26380i
\(417\) 0.0180256 0.0554770i 0.000882717 0.00271672i
\(418\) 12.8933 + 9.20521i 0.630632 + 0.450242i
\(419\) 0.0745323 0.00364114 0.00182057 0.999998i \(-0.499420\pi\)
0.00182057 + 0.999998i \(0.499420\pi\)
\(420\) −0.00493674 0.0151937i −0.000240888 0.000741378i
\(421\) 8.43337 6.12720i 0.411017 0.298621i −0.362996 0.931791i \(-0.618246\pi\)
0.774013 + 0.633169i \(0.218246\pi\)
\(422\) −2.45242 1.78178i −0.119382 0.0867359i
\(423\) 5.53032 + 4.01802i 0.268894 + 0.195363i
\(424\) 31.4058 22.8176i 1.52520 1.10812i
\(425\) 18.1285 + 13.1711i 0.879362 + 0.638894i
\(426\) 0.100758 + 0.0732048i 0.00488173 + 0.00354679i
\(427\) −0.226727 0.697793i −0.0109721 0.0337686i
\(428\) 0.668909 + 2.05869i 0.0323329 + 0.0995106i
\(429\) 0.0619622 0.196219i 0.00299156 0.00947356i
\(430\) 10.7712 33.1503i 0.519432 1.59865i
\(431\) 22.5849 16.4089i 1.08788 0.790390i 0.108838 0.994059i \(-0.465287\pi\)
0.979040 + 0.203670i \(0.0652869\pi\)
\(432\) −0.0848065 0.0616155i −0.00408025 0.00296448i
\(433\) 18.9165 13.7436i 0.909067 0.660476i −0.0317115 0.999497i \(-0.510096\pi\)
0.940779 + 0.339021i \(0.110096\pi\)
\(434\) 3.74009 0.179530
\(435\) 0.0465406 + 0.143237i 0.00223145 + 0.00686770i
\(436\) 7.22671 + 5.25052i 0.346097 + 0.251454i
\(437\) 2.78426 8.56908i 0.133189 0.409915i
\(438\) −0.0217810 + 0.0670351i −0.00104074 + 0.00320306i
\(439\) −27.9619 + 20.3155i −1.33455 + 0.969605i −0.334921 + 0.942246i \(0.608710\pi\)
−0.999626 + 0.0273584i \(0.991290\pi\)
\(440\) 24.7800 18.3195i 1.18134 0.873346i
\(441\) −15.6458 11.3674i −0.745040 0.541303i
\(442\) −32.5040 23.6155i −1.54606 1.12328i
\(443\) 25.5090 18.5333i 1.21197 0.880546i 0.216560 0.976269i \(-0.430516\pi\)
0.995408 + 0.0957235i \(0.0305165\pi\)
\(444\) 0.0120619 0.000572433
\(445\) 18.5040 + 13.4440i 0.877175 + 0.637305i
\(446\) −5.77140 + 17.7625i −0.273284 + 0.841081i
\(447\) 0.0849726 + 0.0617362i 0.00401907 + 0.00292002i
\(448\) −1.90097 + 5.85059i −0.0898125 + 0.276414i
\(449\) 4.66372 14.3534i 0.220094 0.677381i −0.778658 0.627448i \(-0.784099\pi\)
0.998753 0.0499325i \(-0.0159006\pi\)
\(450\) 13.8124 0.651123
\(451\) 20.8823 3.86376i 0.983310 0.181937i
\(452\) −1.78190 −0.0838134
\(453\) −0.0264823 + 0.0815041i −0.00124425 + 0.00382940i
\(454\) 3.32777 10.2418i 0.156180 0.480673i
\(455\) −12.1694 8.84156i −0.570509 0.414499i
\(456\) 0.0378722 0.116559i 0.00177353 0.00545836i
\(457\) 14.5978 + 10.6059i 0.682855 + 0.496123i 0.874304 0.485379i \(-0.161319\pi\)
−0.191449 + 0.981503i \(0.561319\pi\)
\(458\) −5.44667 −0.254506
\(459\) −0.243528 + 0.176934i −0.0113669 + 0.00825855i
\(460\) −3.92477 2.85151i −0.182993 0.132952i
\(461\) −10.2513 7.44798i −0.477449 0.346887i 0.322888 0.946437i \(-0.395346\pi\)
−0.800337 + 0.599550i \(0.795346\pi\)
\(462\) 0.00765867 0.0242532i 0.000356313 0.00112836i
\(463\) 11.6024 8.42966i 0.539211 0.391759i −0.284581 0.958652i \(-0.591855\pi\)
0.823792 + 0.566893i \(0.191855\pi\)
\(464\) 3.12384 9.61419i 0.145021 0.446327i
\(465\) −0.0392303 + 0.120738i −0.00181926 + 0.00559911i
\(466\) 24.4917 + 17.7942i 1.13455 + 0.824302i
\(467\) 2.87816 + 8.85807i 0.133185 + 0.409902i 0.995303 0.0968051i \(-0.0308624\pi\)
−0.862118 + 0.506708i \(0.830862\pi\)
\(468\) 15.3558 0.709823
\(469\) −4.78991 + 3.48008i −0.221178 + 0.160695i
\(470\) −6.19381 4.50007i −0.285699 0.207573i
\(471\) 0.0202643 0.0147228i 0.000933727 0.000678393i
\(472\) −10.7182 + 32.9871i −0.493343 + 1.51835i
\(473\) −27.6682 + 20.4546i −1.27218 + 0.940505i
\(474\) 0.0295253 + 0.0908694i 0.00135614 + 0.00417377i
\(475\) 5.50502 + 16.9427i 0.252588 + 0.777385i
\(476\) 2.49111 + 1.80990i 0.114180 + 0.0829564i
\(477\) −30.6619 22.2772i −1.40391 1.02000i
\(478\) 22.6781 16.4766i 1.03727 0.753624i
\(479\) −9.03280 6.56271i −0.412719 0.299858i 0.361983 0.932185i \(-0.382100\pi\)
−0.774702 + 0.632327i \(0.782100\pi\)
\(480\) −0.0919944 0.0668379i −0.00419895 0.00305072i
\(481\) 9.18811 6.67555i 0.418942 0.304379i
\(482\) 2.89694 + 8.91585i 0.131952 + 0.406106i
\(483\) −0.0144652 −0.000658187
\(484\) −8.41904 + 0.139583i −0.382684 + 0.00634468i
\(485\) 1.81176 5.57603i 0.0822679 0.253194i
\(486\) −0.0860066 + 0.264701i −0.00390134 + 0.0120071i
\(487\) −12.1835 37.4970i −0.552088 1.69915i −0.703513 0.710682i \(-0.748386\pi\)
0.151425 0.988469i \(-0.451614\pi\)
\(488\) −2.45181 1.78135i −0.110988 0.0806378i
\(489\) 0.0126582 0.00919674i 0.000572425 0.000415891i
\(490\) 17.5229 + 12.7311i 0.791604 + 0.575134i
\(491\) −7.72078 23.7621i −0.348434 1.07237i −0.959720 0.280959i \(-0.909347\pi\)
0.611286 0.791410i \(-0.290653\pi\)
\(492\) −0.0213547 0.0401493i −0.000962742 0.00181007i
\(493\) −23.4846 17.0626i −1.05770 0.768461i
\(494\) −9.87037 30.3779i −0.444089 1.36677i
\(495\) −24.4862 17.4820i −1.10057 0.785758i
\(496\) 6.89372 5.00858i 0.309537 0.224892i
\(497\) −8.98730 −0.403136
\(498\) 0.0637363 0.00285609
\(499\) 35.3607 1.58296 0.791480 0.611195i \(-0.209311\pi\)
0.791480 + 0.611195i \(0.209311\pi\)
\(500\) −1.98160 −0.0886200
\(501\) −0.0919875 + 0.0668328i −0.00410970 + 0.00298587i
\(502\) 8.58584 26.4245i 0.383205 1.17938i
\(503\) −19.1703 + 13.9280i −0.854762 + 0.621021i −0.926455 0.376406i \(-0.877160\pi\)
0.0716929 + 0.997427i \(0.477160\pi\)
\(504\) 6.85707 0.305438
\(505\) −7.42053 22.8380i −0.330209 1.01628i
\(506\) −2.44746 7.32534i −0.108803 0.325651i
\(507\) −0.238065 + 0.172964i −0.0105728 + 0.00768161i
\(508\) 4.78338 3.47533i 0.212228 0.154193i
\(509\) −1.89336 + 1.37561i −0.0839217 + 0.0609727i −0.628955 0.777442i \(-0.716517\pi\)
0.545033 + 0.838414i \(0.316517\pi\)
\(510\) 0.136370 0.0990790i 0.00603859 0.00438729i
\(511\) −1.57176 4.83738i −0.0695306 0.213993i
\(512\) 5.93462 + 18.2649i 0.262275 + 0.807201i
\(513\) −0.239312 −0.0105659
\(514\) −2.43601 1.76986i −0.107448 0.0780653i
\(515\) −5.01653 + 15.4393i −0.221055 + 0.680337i
\(516\) 0.0596079 + 0.0433077i 0.00262409 + 0.00190651i
\(517\) 2.39491 + 7.16804i 0.105328 + 0.315250i
\(518\) 1.13567 0.825114i 0.0498985 0.0362534i
\(519\) 0.0794330 + 0.0577114i 0.00348672 + 0.00253325i
\(520\) −62.1326 −2.72470
\(521\) −18.1069 13.1554i −0.793276 0.576349i 0.115658 0.993289i \(-0.463102\pi\)
−0.908934 + 0.416940i \(0.863102\pi\)
\(522\) −17.8933 −0.783169
\(523\) −5.42843 −0.237369 −0.118684 0.992932i \(-0.537868\pi\)
−0.118684 + 0.992932i \(0.537868\pi\)
\(524\) 4.34739 + 13.3799i 0.189917 + 0.584503i
\(525\) 0.0231382 0.0168109i 0.00100983 0.000733688i
\(526\) −28.6059 + 20.7834i −1.24728 + 0.906199i
\(527\) −7.56133 23.2714i −0.329377 1.01372i
\(528\) −0.0183625 0.0549595i −0.000799123 0.00239181i
\(529\) 15.0537 10.9372i 0.654509 0.475528i
\(530\) 34.3405 + 24.9498i 1.49165 + 1.08375i
\(531\) 33.8631 1.46953
\(532\) 0.756466 + 2.32816i 0.0327970 + 0.100939i
\(533\) −38.4871 18.7650i −1.66706 0.812802i
\(534\) 0.0630816 0.0458315i 0.00272981 0.00198332i
\(535\) −6.91797 + 5.02620i −0.299090 + 0.217301i
\(536\) −7.55721 + 23.2587i −0.326422 + 1.00462i
\(537\) 0.0112715 0.000486402
\(538\) −15.5870 + 11.3246i −0.672004 + 0.488240i
\(539\) −6.77543 20.2791i −0.291838 0.873483i
\(540\) −0.0398176 + 0.122546i −0.00171348 + 0.00527354i
\(541\) 13.2005 + 40.6270i 0.567534 + 1.74669i 0.660301 + 0.751001i \(0.270429\pi\)
−0.0927668 + 0.995688i \(0.529571\pi\)
\(542\) −1.09746 + 3.37763i −0.0471399 + 0.145082i
\(543\) −0.00570853 + 0.0175691i −0.000244977 + 0.000753960i
\(544\) 21.9170 0.939683
\(545\) −10.9044 + 33.5603i −0.467093 + 1.43756i
\(546\) −0.0414863 + 0.0301415i −0.00177545 + 0.00128994i
\(547\) −9.83522 + 30.2697i −0.420524 + 1.29424i 0.486693 + 0.873573i \(0.338203\pi\)
−0.907216 + 0.420665i \(0.861797\pi\)
\(548\) 6.76976 0.289190
\(549\) −0.914326 + 2.81401i −0.0390225 + 0.120099i
\(550\) 12.4282 + 8.87313i 0.529939 + 0.378352i
\(551\) −7.13150 21.9485i −0.303812 0.935037i
\(552\) −0.0483382 + 0.0351197i −0.00205741 + 0.00149479i
\(553\) −5.57798 4.05264i −0.237200 0.172336i
\(554\) 9.60475 0.408067
\(555\) 0.0147243 + 0.0453167i 0.000625011 + 0.00192359i
\(556\) 3.89352 + 2.82881i 0.165122 + 0.119968i
\(557\) −6.50450 + 20.0188i −0.275604 + 0.848223i 0.713454 + 0.700702i \(0.247130\pi\)
−0.989059 + 0.147522i \(0.952870\pi\)
\(558\) −12.2022 8.86542i −0.516560 0.375303i
\(559\) 69.3743 2.93422
\(560\) −4.23595 −0.179002
\(561\) −0.166390 + 0.00137923i −0.00702500 + 5.82313e-5i
\(562\) −6.93106 + 5.03571i −0.292369 + 0.212419i
\(563\) 2.26085 + 6.95817i 0.0952833 + 0.293252i 0.987327 0.158697i \(-0.0507291\pi\)
−0.892044 + 0.451948i \(0.850729\pi\)
\(564\) 0.0130925 0.00951228i 0.000551295 0.000400539i
\(565\) −2.17521 6.69461i −0.0915118 0.281644i
\(566\) −12.5588 −0.527888
\(567\) −2.06870 6.36681i −0.0868773 0.267381i
\(568\) −30.0328 + 21.8201i −1.26015 + 0.915552i
\(569\) −4.62806 14.2437i −0.194018 0.597127i −0.999987 0.00516838i \(-0.998355\pi\)
0.805968 0.591959i \(-0.201645\pi\)
\(570\) 0.134009 0.00561303
\(571\) 11.6340 0.486866 0.243433 0.969918i \(-0.421726\pi\)
0.243433 + 0.969918i \(0.421726\pi\)
\(572\) 13.8169 + 9.86463i 0.577714 + 0.412461i
\(573\) 0.0879759 0.00367524
\(574\) −4.75709 2.31940i −0.198557 0.0968097i
\(575\) 2.68382 8.25995i 0.111923 0.344464i
\(576\) 20.0701 14.5818i 0.836254 0.607574i
\(577\) −19.2003 + 13.9499i −0.799320 + 0.580740i −0.910715 0.413036i \(-0.864468\pi\)
0.111394 + 0.993776i \(0.464468\pi\)
\(578\) −4.20284 + 12.9350i −0.174815 + 0.538025i
\(579\) −0.176734 0.128404i −0.00734479 0.00533631i
\(580\) −12.4259 −0.515957
\(581\) −3.72094 + 2.70342i −0.154371 + 0.112157i
\(582\) −0.0161701 0.0117483i −0.000670272 0.000486981i
\(583\) −13.2781 39.7419i −0.549924 1.64594i
\(584\) −16.9970 12.3490i −0.703339 0.511006i
\(585\) 18.7452 + 57.6919i 0.775021 + 2.38527i
\(586\) −5.34741 16.4576i −0.220900 0.679859i
\(587\) 17.2928 12.5640i 0.713751 0.518570i −0.170631 0.985335i \(-0.554581\pi\)
0.884381 + 0.466765i \(0.154581\pi\)
\(588\) −0.0370401 + 0.0269112i −0.00152751 + 0.00110980i
\(589\) 6.01133 18.5010i 0.247692 0.762319i
\(590\) −37.9258 −1.56138
\(591\) −0.142177 + 0.103298i −0.00584838 + 0.00424910i
\(592\) 0.988306 3.04169i 0.0406191 0.125013i
\(593\) 5.66821 17.4450i 0.232766 0.716379i −0.764644 0.644453i \(-0.777085\pi\)
0.997410 0.0719264i \(-0.0229147\pi\)
\(594\) −0.164954 + 0.121948i −0.00676814 + 0.00500358i
\(595\) −3.75884 + 11.5685i −0.154097 + 0.474263i
\(596\) −7.01063 + 5.09352i −0.287167 + 0.208639i
\(597\) 0.00593365 0.000242848
\(598\) −4.81202 + 14.8099i −0.196778 + 0.605621i
\(599\) 6.87971 + 21.1736i 0.281097 + 0.865128i 0.987541 + 0.157360i \(0.0502982\pi\)
−0.706444 + 0.707769i \(0.749702\pi\)
\(600\) 0.0365060 0.112354i 0.00149035 0.00458683i
\(601\) −3.01691 9.28510i −0.123062 0.378747i 0.870481 0.492203i \(-0.163808\pi\)
−0.993543 + 0.113456i \(0.963808\pi\)
\(602\) 8.57482 0.349484
\(603\) 23.8764 0.972321
\(604\) −5.72017 4.15595i −0.232750 0.169103i
\(605\) −10.8018 31.4600i −0.439154 1.27903i
\(606\) −0.0818632 −0.00332546
\(607\) 4.79226 + 14.7491i 0.194512 + 0.598646i 0.999982 + 0.00600935i \(0.00191285\pi\)
−0.805470 + 0.592636i \(0.798087\pi\)
\(608\) 14.0965 + 10.2417i 0.571688 + 0.415355i
\(609\) −0.0299745 + 0.0217777i −0.00121463 + 0.000882478i
\(610\) 1.02402 3.15161i 0.0414614 0.127605i
\(611\) 4.70870 14.4919i 0.190493 0.586278i
\(612\) −3.83721 11.8097i −0.155110 0.477380i
\(613\) 3.40788 0.137643 0.0688216 0.997629i \(-0.478076\pi\)
0.0688216 + 0.997629i \(0.478076\pi\)
\(614\) 3.00142 + 2.18066i 0.121127 + 0.0880041i
\(615\) 0.124773 0.129241i 0.00503133 0.00521150i
\(616\) 6.16988 + 4.40501i 0.248592 + 0.177483i
\(617\) −6.17209 18.9957i −0.248479 0.764739i −0.995045 0.0994278i \(-0.968299\pi\)
0.746566 0.665311i \(-0.231701\pi\)
\(618\) 0.0447729 + 0.0325294i 0.00180103 + 0.00130852i
\(619\) −8.64035 26.5923i −0.347285 1.06883i −0.960349 0.278800i \(-0.910063\pi\)
0.613064 0.790033i \(-0.289937\pi\)
\(620\) −8.47373 6.15653i −0.340313 0.247252i
\(621\) 0.0943877 + 0.0685767i 0.00378765 + 0.00275189i
\(622\) −1.29306 3.97963i −0.0518470 0.159569i
\(623\) −1.73874 + 5.35130i −0.0696613 + 0.214395i
\(624\) −0.0361030 + 0.111114i −0.00144528 + 0.00444810i
\(625\) −8.82168 27.1504i −0.352867 1.08601i
\(626\) 27.5268 + 19.9994i 1.10019 + 0.799337i
\(627\) −0.107663 0.0768662i −0.00429964 0.00306974i
\(628\) 0.638606 + 1.96543i 0.0254832 + 0.0784291i
\(629\) −7.42996 5.39818i −0.296252 0.215240i
\(630\) 2.31696 + 7.13086i 0.0923097 + 0.284100i
\(631\) −8.52660 −0.339438 −0.169719 0.985492i \(-0.554286\pi\)
−0.169719 + 0.985492i \(0.554286\pi\)
\(632\) −28.4793 −1.13284
\(633\) 0.0204784 + 0.0148784i 0.000813943 + 0.000591364i
\(634\) 32.7290 1.29983
\(635\) 18.8960 + 13.7288i 0.749867 + 0.544810i
\(636\) −0.0725891 + 0.0527391i −0.00287835 + 0.00209124i
\(637\) −13.3214 + 40.9990i −0.527812 + 1.62444i
\(638\) −16.1001 11.4947i −0.637409 0.455081i
\(639\) 29.3214 + 21.3033i 1.15994 + 0.842745i
\(640\) −2.64718 + 1.92329i −0.104639 + 0.0760246i
\(641\) −13.6149 41.9022i −0.537755 1.65504i −0.737621 0.675215i \(-0.764051\pi\)
0.199866 0.979823i \(-0.435949\pi\)
\(642\) 0.00900823 + 0.0277245i 0.000355526 + 0.00109420i
\(643\) 27.6836 + 20.1133i 1.09173 + 0.793192i 0.979691 0.200511i \(-0.0642604\pi\)
0.112044 + 0.993703i \(0.464260\pi\)
\(644\) 0.368794 1.13503i 0.0145325 0.0447265i
\(645\) −0.0899424 + 0.276814i −0.00354148 + 0.0108996i
\(646\) −20.8963 + 15.1821i −0.822154 + 0.597330i
\(647\) −6.65837 4.83759i −0.261768 0.190185i 0.449158 0.893452i \(-0.351724\pi\)
−0.710926 + 0.703267i \(0.751724\pi\)
\(648\) −22.3709 16.2534i −0.878810 0.638493i
\(649\) 30.4695 + 21.7538i 1.19603 + 0.853911i
\(650\) −9.51430 29.2820i −0.373181 1.14853i
\(651\) −0.0312308 −0.00122403
\(652\) 0.398910 + 1.22772i 0.0156225 + 0.0480812i
\(653\) 15.6449 + 48.1500i 0.612232 + 1.88426i 0.436126 + 0.899886i \(0.356350\pi\)
0.176107 + 0.984371i \(0.443650\pi\)
\(654\) 0.0973225 + 0.0707089i 0.00380561 + 0.00276494i
\(655\) −44.9614 + 32.6664i −1.75679 + 1.27638i
\(656\) −11.8743 + 2.09540i −0.463613 + 0.0818118i
\(657\) −6.33848 + 19.5078i −0.247288 + 0.761073i
\(658\) 0.582006 1.79123i 0.0226889 0.0698294i
\(659\) 12.5915 0.490496 0.245248 0.969460i \(-0.421131\pi\)
0.245248 + 0.969460i \(0.421131\pi\)
\(660\) −0.0572748 + 0.0423423i −0.00222942 + 0.00164817i
\(661\) 14.6239 10.6249i 0.568805 0.413261i −0.265866 0.964010i \(-0.585658\pi\)
0.834671 + 0.550749i \(0.185658\pi\)
\(662\) 9.24085 28.4404i 0.359156 1.10537i
\(663\) 0.271418 + 0.197197i 0.0105410 + 0.00765848i
\(664\) −5.87065 + 18.0680i −0.227826 + 0.701175i
\(665\) −7.82349 + 5.68410i −0.303382 + 0.220420i
\(666\) −5.66100 −0.219359
\(667\) −3.47676 + 10.7004i −0.134621 + 0.414320i
\(668\) −2.89889 8.92186i −0.112161 0.345197i
\(669\) 0.0481928 0.148322i 0.00186324 0.00573447i
\(670\) −26.7409 −1.03309
\(671\) −2.63042 + 1.94463i −0.101546 + 0.0750716i
\(672\) 0.00864432 0.0266045i 0.000333462 0.00102629i
\(673\) −8.31864 25.6022i −0.320660 0.986891i −0.973362 0.229275i \(-0.926364\pi\)
0.652701 0.757615i \(-0.273636\pi\)
\(674\) 18.2889 0.704463
\(675\) −0.230678 −0.00887881
\(676\) −7.50236 23.0899i −0.288552 0.888073i
\(677\) 2.78482 + 8.57079i 0.107029 + 0.329402i 0.990201 0.139647i \(-0.0445967\pi\)
−0.883172 + 0.469049i \(0.844597\pi\)
\(678\) −0.0239969 −0.000921595
\(679\) 1.44233 0.0553514
\(680\) 15.5261 + 47.7845i 0.595399 + 1.83245i
\(681\) −0.0277879 + 0.0855223i −0.00106483 + 0.00327722i
\(682\) −5.28416 15.8157i −0.202341 0.605614i
\(683\) −19.8324 −0.758867 −0.379433 0.925219i \(-0.623881\pi\)
−0.379433 + 0.925219i \(0.623881\pi\)
\(684\) 3.05062 9.38884i 0.116643 0.358991i
\(685\) 8.26403 + 25.4341i 0.315752 + 0.971786i
\(686\) −3.43444 + 10.5701i −0.131128 + 0.403569i
\(687\) 0.0454813 0.00173522
\(688\) 15.8051 11.4831i 0.602563 0.437788i
\(689\) −26.1065 + 80.3476i −0.994579 + 3.06100i
\(690\) −0.0528551 0.0384014i −0.00201216 0.00146192i
\(691\) 12.3572 38.0315i 0.470090 1.44679i −0.382377 0.924007i \(-0.624894\pi\)
0.852467 0.522782i \(-0.175106\pi\)
\(692\) −6.55358 + 4.76146i −0.249130 + 0.181003i
\(693\) 2.22874 7.05789i 0.0846629 0.268107i
\(694\) 22.2171 0.843351
\(695\) −5.87494 + 18.0812i −0.222849 + 0.685859i
\(696\) −0.0472918 + 0.145549i −0.00179259 + 0.00551702i
\(697\) −4.81423 + 34.2884i −0.182352 + 1.29877i
\(698\) 28.4229 20.6504i 1.07582 0.781630i
\(699\) −0.204512 0.148587i −0.00773537 0.00562008i
\(700\) 0.729176 + 2.24417i 0.0275603 + 0.0848218i
\(701\) 8.76042 + 26.9618i 0.330876 + 1.01833i 0.968718 + 0.248165i \(0.0798275\pi\)
−0.637841 + 0.770168i \(0.720172\pi\)
\(702\) 0.413601 0.0156104
\(703\) −2.25623 6.94396i −0.0850954 0.261897i
\(704\) 27.4261 0.227339i 1.03366 0.00856816i
\(705\) 0.0517201 + 0.0375769i 0.00194789 + 0.00141523i
\(706\) −16.7197 12.1476i −0.629254 0.457180i
\(707\) 4.77919 3.47229i 0.179740 0.130589i
\(708\) 0.0247732 0.0762441i 0.000931034 0.00286543i
\(709\) −10.1123 + 31.1223i −0.379774 + 1.16882i 0.560427 + 0.828204i \(0.310637\pi\)
−0.940201 + 0.340620i \(0.889363\pi\)
\(710\) −32.8392 23.8591i −1.23243 0.895416i
\(711\) 8.59212 + 26.4438i 0.322230 + 0.991721i
\(712\) 7.18199 + 22.1039i 0.269157 + 0.828379i
\(713\) −7.67255 + 5.57444i −0.287339 + 0.208764i
\(714\) 0.0335479 + 0.0243740i 0.00125550 + 0.000912172i
\(715\) −20.1948 + 63.9523i −0.755244 + 2.39168i
\(716\) −0.287371 + 0.884436i −0.0107395 + 0.0330529i
\(717\) −0.189369 + 0.137585i −0.00707212 + 0.00513819i
\(718\) 23.7411 + 17.2489i 0.886011 + 0.643724i
\(719\) −46.0075 −1.71579 −0.857895 0.513825i \(-0.828228\pi\)
−0.857895 + 0.513825i \(0.828228\pi\)
\(720\) 13.8200 + 10.0408i 0.515040 + 0.374198i
\(721\) −3.99361 −0.148730
\(722\) 0.576272 0.0214466
\(723\) −0.0241902 0.0744499i −0.000899645 0.00276882i
\(724\) −1.23304 0.895857i −0.0458256 0.0332943i
\(725\) −6.87423 21.1567i −0.255302 0.785740i
\(726\) −0.113380 + 0.00187977i −0.00420791 + 6.97648e-5i
\(727\) −27.4157 19.9187i −1.01679 0.738742i −0.0511687 0.998690i \(-0.516295\pi\)
−0.965623 + 0.259948i \(0.916295\pi\)
\(728\) −4.72331 14.5369i −0.175058 0.538772i
\(729\) −8.34202 + 25.6741i −0.308964 + 0.950893i
\(730\) 7.09892 21.8482i 0.262743 0.808639i
\(731\) −17.3357 53.3538i −0.641184 1.97336i
\(732\) 0.00566695 + 0.00411728i 0.000209456 + 0.000152179i
\(733\) 15.3275 + 11.1361i 0.566135 + 0.411321i 0.833699 0.552219i \(-0.186219\pi\)
−0.267564 + 0.963540i \(0.586219\pi\)
\(734\) 1.77382 + 5.45925i 0.0654728 + 0.201505i
\(735\) −0.146321 0.106309i −0.00539714 0.00392125i
\(736\) −2.62500 8.07892i −0.0967588 0.297793i
\(737\) 21.4836 + 15.3383i 0.791357 + 0.564992i
\(738\) 10.0224 + 18.8432i 0.368928 + 0.693628i
\(739\) 2.60157 + 1.89015i 0.0957001 + 0.0695302i 0.634606 0.772836i \(-0.281162\pi\)
−0.538906 + 0.842366i \(0.681162\pi\)
\(740\) −3.93124 −0.144515
\(741\) 0.0824205 + 0.253664i 0.00302779 + 0.00931859i
\(742\) −3.22682 + 9.93115i −0.118460 + 0.364584i
\(743\) −3.53230 + 10.8713i −0.129587 + 0.398829i −0.994709 0.102733i \(-0.967241\pi\)
0.865121 + 0.501562i \(0.167241\pi\)
\(744\) −0.104364 + 0.0758249i −0.00382617 + 0.00277987i
\(745\) −27.6945 20.1212i −1.01465 0.737184i
\(746\) −7.32044 22.5300i −0.268021 0.824882i
\(747\) 18.5478 0.678630
\(748\) 4.13395 13.0912i 0.151152 0.478663i
\(749\) −1.70186 1.23647i −0.0621845 0.0451797i
\(750\) −0.0266863 −0.000974448
\(751\) 2.83375 0.103405 0.0517025 0.998663i \(-0.483535\pi\)
0.0517025 + 0.998663i \(0.483535\pi\)
\(752\) −1.32599 4.08099i −0.0483540 0.148818i
\(753\) −0.0716942 + 0.220652i −0.00261268 + 0.00804101i
\(754\) 12.3253 + 37.9335i 0.448862 + 1.38145i
\(755\) 8.63117 26.5640i 0.314120 0.966763i
\(756\) −0.0316984 −0.00115286
\(757\) 2.51130 1.82457i 0.0912748 0.0663150i −0.541212 0.840886i \(-0.682034\pi\)
0.632487 + 0.774571i \(0.282034\pi\)
\(758\) 10.7521 33.0916i 0.390534 1.20194i
\(759\) 0.0204370 + 0.0611687i 0.000741816 + 0.00222028i
\(760\) −12.3434 + 37.9891i −0.447742 + 1.37801i
\(761\) 14.8470 45.6943i 0.538202 1.65642i −0.198424 0.980116i \(-0.563582\pi\)
0.736626 0.676300i \(-0.236418\pi\)
\(762\) 0.0644180 0.0468024i 0.00233362 0.00169547i
\(763\) −8.68088 −0.314269
\(764\) −2.24297 + 6.90316i −0.0811479 + 0.249748i
\(765\) 39.6851 28.8329i 1.43482 1.04246i
\(766\) −17.5964 + 12.7845i −0.635784 + 0.461924i
\(767\) −23.3257 71.7891i −0.842242 2.59216i
\(768\) −0.0439714 0.135330i −0.00158668 0.00488330i
\(769\) 5.45649 + 3.96437i 0.196766 + 0.142959i 0.681806 0.731533i \(-0.261195\pi\)
−0.485040 + 0.874492i \(0.661195\pi\)
\(770\) −2.49613 + 7.90465i −0.0899543 + 0.284864i
\(771\) 0.0203414 + 0.0147789i 0.000732577 + 0.000532248i
\(772\) 14.5813 10.5939i 0.524793 0.381285i
\(773\) −30.0163 −1.07961 −0.539805 0.841790i \(-0.681502\pi\)
−0.539805 + 0.841790i \(0.681502\pi\)
\(774\) −27.9757 20.3256i −1.00557 0.730587i
\(775\) 5.79447 17.8335i 0.208143 0.640600i
\(776\) 4.81981 3.50180i 0.173021 0.125707i
\(777\) −0.00948318 + 0.00688994i −0.000340207 + 0.000247175i
\(778\) −6.03520 + 18.5744i −0.216372 + 0.665925i
\(779\) −19.1192 + 19.8038i −0.685016 + 0.709546i
\(780\) 0.143609 0.00514203
\(781\) 12.6976 + 38.0045i 0.454357 + 1.35991i
\(782\) 12.5923 0.450301
\(783\) 0.298833 0.0106794
\(784\) 3.75136 + 11.5455i 0.133977 + 0.412340i
\(785\) −6.60457 + 4.79850i −0.235727 + 0.171266i
\(786\) 0.0585465 + 0.180188i 0.00208829 + 0.00642708i
\(787\) 4.98959 0.177860 0.0889299 0.996038i \(-0.471655\pi\)
0.0889299 + 0.996038i \(0.471655\pi\)
\(788\) −4.48056 13.7897i −0.159613 0.491239i
\(789\) 0.238867 0.173547i 0.00850390 0.00617845i
\(790\) −9.62294 29.6164i −0.342369 1.05370i
\(791\) 1.40094 1.01785i 0.0498119 0.0361904i
\(792\) −9.68797 28.9965i −0.344247 1.03034i
\(793\) 6.59544 0.234211
\(794\) −14.1554 −0.502358
\(795\) −0.286753 0.208338i −0.0101701 0.00738899i
\(796\) −0.151280 + 0.465593i −0.00536199 + 0.0165025i
\(797\) −27.6312 20.0753i −0.978748 0.711102i −0.0213195 0.999773i \(-0.506787\pi\)
−0.957428 + 0.288671i \(0.906787\pi\)
\(798\) 0.0101874 + 0.0313535i 0.000360629 + 0.00110990i
\(799\) −12.3219 −0.435919
\(800\) 13.5879 + 9.87222i 0.480406 + 0.349036i
\(801\) 18.3573 13.3374i 0.648624 0.471253i
\(802\) 0.124439 + 0.382985i 0.00439410 + 0.0135237i
\(803\) −18.2352 + 13.4810i −0.643505 + 0.475733i
\(804\) 0.0174672 0.0537586i 0.000616021 0.00189592i
\(805\) 4.71452 0.166165
\(806\) −10.3893 + 31.9751i −0.365949 + 1.12628i
\(807\) 0.130156 0.0945640i 0.00458171 0.00332881i
\(808\) 7.54030 23.2067i 0.265267 0.816407i
\(809\) 13.3254 0.468497 0.234248 0.972177i \(-0.424737\pi\)
0.234248 + 0.972177i \(0.424737\pi\)
\(810\) 9.34337 28.7559i 0.328293 1.01038i
\(811\) 16.0696 49.4572i 0.564280 1.73668i −0.105799 0.994387i \(-0.533740\pi\)
0.670080 0.742289i \(-0.266260\pi\)
\(812\) −0.944614 2.90722i −0.0331494 0.102023i
\(813\) 0.00916411 0.0282042i 0.000321399 0.000989165i
\(814\) −5.09368 3.63665i −0.178533 0.127464i
\(815\) −4.12560 + 2.99742i −0.144513 + 0.104995i
\(816\) 0.0944759 0.00330732
\(817\) 13.7820 42.4168i 0.482173 1.48398i
\(818\) −16.1762 + 11.7527i −0.565586 + 0.410923i
\(819\) −12.0729 + 8.77146i −0.421861 + 0.306500i
\(820\) 6.95996 + 13.0855i 0.243052 + 0.456967i
\(821\) 2.18675 + 6.73013i 0.0763181 + 0.234883i 0.981937 0.189210i \(-0.0605928\pi\)
−0.905618 + 0.424093i \(0.860593\pi\)
\(822\) 0.0911687 0.00317987
\(823\) 17.8896 + 12.9976i 0.623593 + 0.453067i 0.854175 0.519986i \(-0.174063\pi\)
−0.230582 + 0.973053i \(0.574063\pi\)
\(824\) −13.3454 + 9.69602i −0.464910 + 0.337777i
\(825\) −0.103779 0.0740932i −0.00361311 0.00257960i
\(826\) −2.88311 8.87330i −0.100316 0.308742i
\(827\) −41.8975 + 30.4403i −1.45692 + 1.05851i −0.472765 + 0.881189i \(0.656744\pi\)
−0.984153 + 0.177324i \(0.943256\pi\)
\(828\) −3.89365 + 2.82890i −0.135314 + 0.0983112i
\(829\) −11.2743 34.6986i −0.391571 1.20513i −0.931600 0.363486i \(-0.881586\pi\)
0.540028 0.841647i \(-0.318414\pi\)
\(830\) −20.7731 −0.721044
\(831\) −0.0802025 −0.00278219
\(832\) −44.7378 32.5039i −1.55100 1.12687i
\(833\) 34.8600 1.20783
\(834\) 0.0524342 + 0.0380957i 0.00181565 + 0.00131915i
\(835\) 29.9808 21.7823i 1.03753 0.753808i
\(836\) 8.77632 6.48819i 0.303535 0.224399i
\(837\) 0.203787 + 0.148060i 0.00704390 + 0.00511769i
\(838\) −0.0255904 + 0.0787591i −0.000884006 + 0.00272069i
\(839\) 40.5580 + 29.4671i 1.40022 + 1.01732i 0.994655 + 0.103250i \(0.0329241\pi\)
0.405562 + 0.914068i \(0.367076\pi\)
\(840\) 0.0641280 0.00221263
\(841\) −0.0562522 0.173126i −0.00193973 0.00596987i
\(842\) 3.57912 + 11.0154i 0.123345 + 0.379616i
\(843\) 0.0578764 0.0420496i 0.00199337 0.00144827i
\(844\) −1.68956 + 1.22754i −0.0581570 + 0.0422536i
\(845\) 77.5907 56.3729i 2.66920 1.93929i
\(846\) −6.14470 + 4.46439i −0.211259 + 0.153489i
\(847\) 6.53940 4.91882i 0.224696 0.169013i
\(848\) 7.35173 + 22.6263i 0.252459 + 0.776990i
\(849\) 0.104870 0.00359913
\(850\) −20.1425 + 14.6344i −0.690881 + 0.501954i
\(851\) −1.09996 + 3.38533i −0.0377062 + 0.116048i
\(852\) 0.0694158 0.0504335i 0.00237815 0.00172782i
\(853\) 11.0861 0.379582 0.189791 0.981825i \(-0.439219\pi\)
0.189791 + 0.981825i \(0.439219\pi\)
\(854\) 0.815212 0.0278960
\(855\) 38.9979 1.33370
\(856\) −8.68910 −0.296987
\(857\) 16.3556 11.8830i 0.558697 0.405917i −0.272285 0.962217i \(-0.587779\pi\)
0.830982 + 0.556300i \(0.187779\pi\)
\(858\) 0.186073 + 0.132847i 0.00635242 + 0.00453534i
\(859\) 9.29505 + 28.6072i 0.317143 + 0.976066i 0.974863 + 0.222803i \(0.0715208\pi\)
−0.657720 + 0.753262i \(0.728479\pi\)
\(860\) −19.4275 14.1149i −0.662474 0.481315i
\(861\) 0.0397231 + 0.0193676i 0.00135376 + 0.000660047i
\(862\) 9.58504 + 29.4997i 0.326468 + 1.00476i
\(863\) 24.7344 + 17.9706i 0.841968 + 0.611725i 0.922920 0.384993i \(-0.125796\pi\)
−0.0809520 + 0.996718i \(0.525796\pi\)
\(864\) −0.182533 + 0.132618i −0.00620989 + 0.00451175i
\(865\) −25.8890 18.8094i −0.880252 0.639540i
\(866\) 8.02814 + 24.7081i 0.272807 + 0.839615i
\(867\) 0.0350949 0.108011i 0.00119189 0.00366825i
\(868\) 0.796240 2.45057i 0.0270261 0.0831779i
\(869\) −9.25656 + 29.3133i −0.314007 + 0.994386i
\(870\) −0.167340 −0.00567336
\(871\) −16.4466 50.6174i −0.557272 1.71511i
\(872\) −29.0089 + 21.0762i −0.982364 + 0.713729i
\(873\) −4.70565 3.41885i −0.159262 0.115711i
\(874\) 8.09908 + 5.88433i 0.273955 + 0.199040i
\(875\) 1.55796 1.13192i 0.0526685 0.0382659i
\(876\) 0.0392856 + 0.0285426i 0.00132734 + 0.000964366i
\(877\) −5.20434 3.78117i −0.175738 0.127681i 0.496439 0.868072i \(-0.334641\pi\)
−0.672177 + 0.740390i \(0.734641\pi\)
\(878\) −11.8670 36.5229i −0.400492 1.23259i
\(879\) 0.0446524 + 0.137426i 0.00150609 + 0.00463527i
\(880\) 5.98473 + 17.9125i 0.201745 + 0.603831i
\(881\) −10.2950 + 31.6847i −0.346847 + 1.06749i 0.613741 + 0.789508i \(0.289664\pi\)
−0.960588 + 0.277977i \(0.910336\pi\)
\(882\) 17.3840 12.6302i 0.585349 0.425281i
\(883\) −28.6188 20.7928i −0.963100 0.699733i −0.00923162 0.999957i \(-0.502939\pi\)
−0.953869 + 0.300224i \(0.902939\pi\)
\(884\) −22.3932 + 16.2696i −0.753165 + 0.547206i
\(885\) 0.316691 0.0106455
\(886\) 10.8260 + 33.3190i 0.363706 + 1.11937i
\(887\) −24.9254 18.1093i −0.836912 0.608052i 0.0845945 0.996415i \(-0.473041\pi\)
−0.921506 + 0.388363i \(0.873041\pi\)
\(888\) −0.0149620 + 0.0460482i −0.000502090 + 0.00154527i
\(889\) −1.77558 + 5.46467i −0.0595510 + 0.183279i
\(890\) −20.5597 + 14.9375i −0.689163 + 0.500706i
\(891\) −24.0005 + 17.7432i −0.804048 + 0.594420i
\(892\) 10.4096 + 7.56305i 0.348541 + 0.253230i
\(893\) −7.92517 5.75797i −0.265206 0.192683i
\(894\) −0.0944125 + 0.0685947i −0.00315763 + 0.00229415i
\(895\) −3.67364 −0.122796
\(896\) −0.651220 0.473139i −0.0217557 0.0158065i
\(897\) 0.0401818 0.123667i 0.00134163 0.00412911i
\(898\) 13.5662 + 9.85641i 0.452709 + 0.328913i
\(899\) −7.50646 + 23.1025i −0.250355 + 0.770512i
\(900\) 2.94057 9.05013i 0.0980189 0.301671i
\(901\) 68.3167 2.27596
\(902\) −3.08699 + 23.3932i −0.102786 + 0.778909i
\(903\) −0.0716023 −0.00238277
\(904\) 2.21032 6.80266i 0.0735141 0.226253i
\(905\) 1.86054 5.72615i 0.0618464 0.190344i
\(906\) −0.0770338 0.0559683i −0.00255928 0.00185942i
\(907\) −5.74668 + 17.6865i −0.190816 + 0.587270i −1.00000 0.000284921i \(-0.999909\pi\)
0.809184 + 0.587555i \(0.199909\pi\)
\(908\) −6.00217 4.36083i −0.199189 0.144719i
\(909\) −23.8229 −0.790157
\(910\) 13.5213 9.82380i 0.448227 0.325656i
\(911\) −2.05260 1.49130i −0.0680058 0.0494091i 0.553263 0.833007i \(-0.313382\pi\)
−0.621269 + 0.783598i \(0.713382\pi\)
\(912\) 0.0607646 + 0.0441481i 0.00201212 + 0.00146189i
\(913\) 16.6890 + 11.9152i 0.552326 + 0.394335i
\(914\) −16.2195 + 11.7841i −0.536493 + 0.389785i
\(915\) −0.00855086 + 0.0263169i −0.000282683 + 0.000870008i
\(916\) −1.15956 + 3.56876i −0.0383129 + 0.117915i
\(917\) −11.0608 8.03611i −0.365258 0.265376i
\(918\) −0.103353 0.318089i −0.00341117 0.0104985i
\(919\) −32.4559 −1.07062 −0.535311 0.844655i \(-0.679806\pi\)
−0.535311 + 0.844655i \(0.679806\pi\)
\(920\) 15.7545 11.4463i 0.519410 0.377373i
\(921\) −0.0250627 0.0182091i −0.000825844 0.000600011i
\(922\) 11.3901 8.27540i 0.375113 0.272536i
\(923\) 24.9652 76.8350i 0.821740 2.52906i
\(924\) −0.0142606 0.0101814i −0.000469140 0.000334944i
\(925\) −2.17484 6.69346i −0.0715082 0.220080i
\(926\) 4.92407 + 15.1547i 0.161815 + 0.498015i
\(927\) 13.0293 + 9.46635i 0.427939 + 0.310916i
\(928\) −17.6025 12.7890i −0.577832 0.419819i
\(929\) 19.2793 14.0072i 0.632533 0.459562i −0.224744 0.974418i \(-0.572155\pi\)
0.857277 + 0.514856i \(0.172155\pi\)
\(930\) −0.114116 0.0829102i −0.00374202 0.00271873i
\(931\) 22.4211 + 16.2899i 0.734822 + 0.533879i
\(932\) 16.8732 12.2591i 0.552700 0.401560i
\(933\) 0.0107974 + 0.0332311i 0.000353492 + 0.00108794i
\(934\) −10.3486 −0.338618
\(935\) 54.2303 0.449523i 1.77352 0.0147010i
\(936\) −19.0478 + 58.6231i −0.622597 + 1.91616i
\(937\) −5.59984 + 17.2345i −0.182939 + 0.563028i −0.999907 0.0136551i \(-0.995653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(938\) −2.03284 6.25643i −0.0663745 0.204280i
\(939\) −0.229857 0.167001i −0.00750110 0.00544987i
\(940\) −4.26715 + 3.10026i −0.139179 + 0.101119i
\(941\) −47.6045 34.5867i −1.55186 1.12749i −0.942307 0.334749i \(-0.891349\pi\)
−0.609554 0.792745i \(-0.708651\pi\)
\(942\) 0.00860014 + 0.0264685i 0.000280208 + 0.000862391i
\(943\) 13.2158 2.33214i 0.430366 0.0759448i
\(944\) −17.1969 12.4943i −0.559712 0.406654i
\(945\) −0.0386951 0.119091i −0.00125875 0.00387404i
\(946\) −12.1149 36.2603i −0.393889 1.17892i
\(947\) −12.2329 + 8.88771i −0.397515 + 0.288812i −0.768528 0.639816i \(-0.779011\pi\)
0.371013 + 0.928628i \(0.379011\pi\)
\(948\) 0.0658250 0.00213790
\(949\) 45.7223 1.48421
\(950\) −19.7937 −0.642193
\(951\) −0.273296 −0.00886224
\(952\) −9.99960 + 7.26513i −0.324089 + 0.235464i
\(953\) 8.89969 27.3904i 0.288289 0.887263i −0.697104 0.716970i \(-0.745529\pi\)
0.985393 0.170293i \(-0.0544715\pi\)
\(954\) 34.0682 24.7520i 1.10300 0.801375i
\(955\) −28.6733 −0.927846
\(956\) −5.96777 18.3669i −0.193011 0.594028i
\(957\) 0.134441 + 0.0959843i 0.00434585 + 0.00310273i
\(958\) 10.0363 7.29178i 0.324257 0.235587i
\(959\) −5.32245 + 3.86699i −0.171871 + 0.124872i
\(960\) 0.187697 0.136370i 0.00605791 0.00440133i
\(961\) 8.51419 6.18592i 0.274651 0.199546i
\(962\) 3.89943 + 12.0012i 0.125723 + 0.386935i
\(963\) 2.62148 + 8.06808i 0.0844759 + 0.259990i
\(964\) 6.45856 0.208016
\(965\) 57.6014 + 41.8499i 1.85425 + 1.34719i
\(966\) 0.00496656 0.0152855i 0.000159796 0.000491803i
\(967\) 24.8279 + 18.0385i 0.798412 + 0.580080i 0.910448 0.413624i \(-0.135737\pi\)
−0.112036 + 0.993704i \(0.535737\pi\)
\(968\) 9.91036 32.3141i 0.318531 1.03862i
\(969\) 0.174490 0.126775i 0.00560543 0.00407258i
\(970\) 5.27019 + 3.82902i 0.169216 + 0.122942i
\(971\) −6.19187 −0.198706 −0.0993532 0.995052i \(-0.531677\pi\)
−0.0993532 + 0.995052i \(0.531677\pi\)
\(972\) 0.155127 + 0.112706i 0.00497569 + 0.00361505i
\(973\) −4.67698 −0.149937
\(974\) 43.8067 1.40366
\(975\) 0.0794471 + 0.244513i 0.00254434 + 0.00783069i
\(976\) 1.50260 1.09170i 0.0480969 0.0349445i
\(977\) 0.305987 0.222312i 0.00978938 0.00711240i −0.582880 0.812558i \(-0.698074\pi\)
0.592669 + 0.805446i \(0.298074\pi\)
\(978\) 0.00537215 + 0.0165338i 0.000171782 + 0.000528691i
\(979\) 25.0856 0.207938i 0.801739 0.00664573i
\(980\) 12.0722 8.77095i 0.385632 0.280178i
\(981\) 28.3217 + 20.5769i 0.904243 + 0.656971i
\(982\) 27.7606 0.885877
\(983\) −11.2162 34.5200i −0.357742 1.10102i −0.954403 0.298523i \(-0.903506\pi\)
0.596661 0.802494i \(-0.296494\pi\)
\(984\) 0.179765 0.0317223i 0.00573069 0.00101127i
\(985\) 46.3386 33.6670i 1.47647 1.07272i
\(986\) 26.0936 18.9581i 0.830990 0.603750i
\(987\) −0.00485992 + 0.0149573i −0.000154693 + 0.000476095i
\(988\) −22.0055 −0.700087
\(989\) −17.5907 + 12.7804i −0.559352 + 0.406393i
\(990\) 26.8807 19.8725i 0.854325 0.631589i
\(991\) −2.28656 + 7.03732i −0.0726351 + 0.223548i −0.980783 0.195102i \(-0.937496\pi\)
0.908148 + 0.418649i \(0.137496\pi\)
\(992\) −5.66748 17.4427i −0.179943 0.553806i
\(993\) −0.0771638 + 0.237486i −0.00244872 + 0.00753638i
\(994\) 3.08576 9.49699i 0.0978743 0.301226i
\(995\) −1.93391 −0.0613090
\(996\) 0.0135690 0.0417611i 0.000429951 0.00132325i
\(997\) −21.8403 + 15.8679i −0.691690 + 0.502542i −0.877215 0.480098i \(-0.840601\pi\)
0.185525 + 0.982639i \(0.440601\pi\)
\(998\) −12.1410 + 37.3660i −0.384315 + 1.18280i
\(999\) 0.0945434 0.00299122
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 451.2.h.a.59.14 160
11.3 even 5 451.2.j.a.223.27 yes 160
41.16 even 5 451.2.j.a.180.27 yes 160
451.344 even 5 inner 451.2.h.a.344.14 yes 160
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
451.2.h.a.59.14 160 1.1 even 1 trivial
451.2.h.a.344.14 yes 160 451.344 even 5 inner
451.2.j.a.180.27 yes 160 41.16 even 5
451.2.j.a.223.27 yes 160 11.3 even 5