Properties

Label 451.2.h.a.59.12
Level $451$
Weight $2$
Character 451.59
Analytic conductor $3.601$
Analytic rank $0$
Dimension $160$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [451,2,Mod(59,451)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(451, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("451.59");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 451 = 11 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 451.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.60125313116\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(40\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 59.12
Character \(\chi\) \(=\) 451.59
Dual form 451.2.h.a.344.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.472524 + 1.45428i) q^{2} +(-1.00332 + 3.08789i) q^{3} +(-0.273616 - 0.198794i) q^{4} +(-0.450992 + 1.38801i) q^{5} +(-4.01657 - 2.91821i) q^{6} +1.39505 q^{7} +(-2.05578 + 1.49361i) q^{8} +(-6.10139 - 4.43292i) q^{9} +O(q^{10})\) \(q+(-0.472524 + 1.45428i) q^{2} +(-1.00332 + 3.08789i) q^{3} +(-0.273616 - 0.198794i) q^{4} +(-0.450992 + 1.38801i) q^{5} +(-4.01657 - 2.91821i) q^{6} +1.39505 q^{7} +(-2.05578 + 1.49361i) q^{8} +(-6.10139 - 4.43292i) q^{9} +(-1.80545 - 1.31174i) q^{10} +(3.03624 - 1.33463i) q^{11} +(0.888378 - 0.645444i) q^{12} +(-0.634783 + 1.95366i) q^{13} +(-0.659196 + 2.02880i) q^{14} +(-3.83354 - 2.78523i) q^{15} +(-1.40975 - 4.33875i) q^{16} -6.12768 q^{17} +(9.32975 - 6.77846i) q^{18} +(3.71979 + 2.70258i) q^{19} +(0.399326 - 0.290127i) q^{20} +(-1.39968 + 4.30777i) q^{21} +(0.506233 + 5.04619i) q^{22} +(-0.781179 - 2.40422i) q^{23} +(-2.54951 - 7.84658i) q^{24} +(2.32191 + 1.68697i) q^{25} +(-2.54122 - 1.84630i) q^{26} +(11.9298 - 8.66754i) q^{27} +(-0.381709 - 0.277328i) q^{28} +(0.892565 + 0.648487i) q^{29} +(5.86194 - 4.25895i) q^{30} +(1.60003 + 4.92440i) q^{31} +1.89374 q^{32} +(1.07489 + 10.7146i) q^{33} +(2.89547 - 8.91135i) q^{34} +(-0.629157 + 1.93635i) q^{35} +(0.788202 + 2.42584i) q^{36} +(8.50888 + 6.18207i) q^{37} +(-5.68800 + 4.13257i) q^{38} +(-5.39581 - 3.92028i) q^{39} +(-1.14601 - 3.52704i) q^{40} +(0.614070 - 6.37361i) q^{41} +(-5.60332 - 4.07105i) q^{42} +(0.218856 + 0.673569i) q^{43} +(-1.09608 - 0.238409i) q^{44} +(8.90460 - 6.46957i) q^{45} +3.86554 q^{46} -4.96998 q^{47} +14.8120 q^{48} -5.05383 q^{49} +(-3.55048 + 2.57957i) q^{50} +(6.14800 - 18.9216i) q^{51} +(0.562063 - 0.408362i) q^{52} +7.06598 q^{53} +(6.96788 + 21.4449i) q^{54} +(0.483164 + 4.81624i) q^{55} +(-2.86792 + 2.08366i) q^{56} +(-12.0774 + 8.77475i) q^{57} +(-1.36484 + 0.991614i) q^{58} +(-7.00223 + 5.08741i) q^{59} +(0.495232 + 1.52417i) q^{60} +(-3.74096 - 11.5135i) q^{61} -7.91751 q^{62} +(-8.51175 - 6.18415i) q^{63} +(1.92465 - 5.92348i) q^{64} +(-2.42542 - 1.76217i) q^{65} +(-16.0900 - 3.49974i) q^{66} +(-0.647587 + 0.470499i) q^{67} +(1.67663 + 1.21814i) q^{68} +8.20775 q^{69} +(-2.51870 - 1.82994i) q^{70} +9.27015 q^{71} +19.1641 q^{72} +(3.94398 + 12.1383i) q^{73} +(-13.0111 + 9.45312i) q^{74} +(-7.53878 + 5.47724i) q^{75} +(-0.480537 - 1.47894i) q^{76} +(4.23571 - 1.86188i) q^{77} +(8.25084 - 5.99458i) q^{78} +(-11.5180 - 8.36829i) q^{79} +6.65801 q^{80} +(7.80344 + 24.0165i) q^{81} +(8.97885 + 3.90471i) q^{82} +(-8.53869 + 6.20372i) q^{83} +(1.23933 - 0.900428i) q^{84} +(2.76353 - 8.50527i) q^{85} -1.08297 q^{86} +(-2.89798 + 2.10551i) q^{87} +(-4.24841 + 7.27866i) q^{88} +(-3.65285 + 11.2423i) q^{89} +(5.20093 + 16.0068i) q^{90} +(-0.885555 + 2.72546i) q^{91} +(-0.264201 + 0.813128i) q^{92} -16.8114 q^{93} +(2.34843 - 7.22773i) q^{94} +(-5.42880 + 3.94426i) q^{95} +(-1.90002 + 5.84765i) q^{96} +9.36484 q^{97} +(2.38806 - 7.34968i) q^{98} +(-24.4416 - 5.31629i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q + q^{2} - 7 q^{3} - 39 q^{4} - q^{5} - 4 q^{6} - 6 q^{7} + 3 q^{8} - 45 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 160 q + q^{2} - 7 q^{3} - 39 q^{4} - q^{5} - 4 q^{6} - 6 q^{7} + 3 q^{8} - 45 q^{9} + 12 q^{10} + 7 q^{12} - 14 q^{13} - 10 q^{14} + 19 q^{15} - 41 q^{16} + 10 q^{17} + 9 q^{18} + 12 q^{19} + 23 q^{20} + 11 q^{21} + 35 q^{22} + 5 q^{23} + 46 q^{24} - 39 q^{25} + 5 q^{26} + 11 q^{27} - 33 q^{28} - 4 q^{29} + 6 q^{30} + 2 q^{31} - 28 q^{32} - 34 q^{33} - 29 q^{34} + 24 q^{35} - 17 q^{36} - q^{37} - 69 q^{38} + 19 q^{39} + 33 q^{40} - 33 q^{41} + 46 q^{42} - 7 q^{43} + 20 q^{44} - 53 q^{45} - 46 q^{46} - 56 q^{47} - 6 q^{48} + 118 q^{49} + 13 q^{50} + 21 q^{51} + 81 q^{52} + 2 q^{53} + 69 q^{54} - 75 q^{55} + 11 q^{56} - 52 q^{57} + q^{58} + 35 q^{59} + 17 q^{60} + 7 q^{61} - 62 q^{62} - 2 q^{63} - 89 q^{64} - 41 q^{65} - 48 q^{66} - 43 q^{67} + 11 q^{68} - 30 q^{69} + 3 q^{70} + 54 q^{71} + 6 q^{72} - 30 q^{73} - 74 q^{74} + 57 q^{75} - 62 q^{76} - 17 q^{77} + 50 q^{78} - 22 q^{79} + 94 q^{80} - 58 q^{81} + 55 q^{82} + 22 q^{83} - 169 q^{84} + 6 q^{85} + 90 q^{86} + 46 q^{87} + 110 q^{88} - 13 q^{89} + 130 q^{90} + 54 q^{91} + 18 q^{92} - 70 q^{93} - 209 q^{94} + 7 q^{95} + 94 q^{96} + 64 q^{97} + 35 q^{98} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/451\mathbb{Z}\right)^\times\).

\(n\) \(288\) \(375\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.472524 + 1.45428i −0.334125 + 1.02833i 0.633026 + 0.774130i \(0.281812\pi\)
−0.967151 + 0.254201i \(0.918188\pi\)
\(3\) −1.00332 + 3.08789i −0.579265 + 1.78280i 0.0419066 + 0.999122i \(0.486657\pi\)
−0.621172 + 0.783674i \(0.713343\pi\)
\(4\) −0.273616 0.198794i −0.136808 0.0993969i
\(5\) −0.450992 + 1.38801i −0.201690 + 0.620737i 0.798144 + 0.602467i \(0.205816\pi\)
−0.999833 + 0.0182693i \(0.994184\pi\)
\(6\) −4.01657 2.91821i −1.63976 1.19135i
\(7\) 1.39505 0.527280 0.263640 0.964621i \(-0.415077\pi\)
0.263640 + 0.964621i \(0.415077\pi\)
\(8\) −2.05578 + 1.49361i −0.726827 + 0.528070i
\(9\) −6.10139 4.43292i −2.03380 1.47764i
\(10\) −1.80545 1.31174i −0.570933 0.414807i
\(11\) 3.03624 1.33463i 0.915461 0.402407i
\(12\) 0.888378 0.645444i 0.256453 0.186324i
\(13\) −0.634783 + 1.95366i −0.176057 + 0.541848i −0.999680 0.0252896i \(-0.991949\pi\)
0.823623 + 0.567138i \(0.191949\pi\)
\(14\) −0.659196 + 2.02880i −0.176177 + 0.542219i
\(15\) −3.83354 2.78523i −0.989815 0.719143i
\(16\) −1.40975 4.33875i −0.352436 1.08469i
\(17\) −6.12768 −1.48618 −0.743090 0.669192i \(-0.766641\pi\)
−0.743090 + 0.669192i \(0.766641\pi\)
\(18\) 9.32975 6.77846i 2.19904 1.59770i
\(19\) 3.71979 + 2.70258i 0.853377 + 0.620015i 0.926075 0.377339i \(-0.123161\pi\)
−0.0726978 + 0.997354i \(0.523161\pi\)
\(20\) 0.399326 0.290127i 0.0892921 0.0648745i
\(21\) −1.39968 + 4.30777i −0.305435 + 0.940033i
\(22\) 0.506233 + 5.04619i 0.107929 + 1.07585i
\(23\) −0.781179 2.40422i −0.162887 0.501315i 0.835987 0.548749i \(-0.184896\pi\)
−0.998874 + 0.0474339i \(0.984896\pi\)
\(24\) −2.54951 7.84658i −0.520416 1.60168i
\(25\) 2.32191 + 1.68697i 0.464382 + 0.337393i
\(26\) −2.54122 1.84630i −0.498374 0.362090i
\(27\) 11.9298 8.66754i 2.29590 1.66807i
\(28\) −0.381709 0.277328i −0.0721362 0.0524100i
\(29\) 0.892565 + 0.648487i 0.165745 + 0.120421i 0.667566 0.744551i \(-0.267336\pi\)
−0.501821 + 0.864972i \(0.667336\pi\)
\(30\) 5.86194 4.25895i 1.07024 0.777574i
\(31\) 1.60003 + 4.92440i 0.287375 + 0.884448i 0.985677 + 0.168645i \(0.0539391\pi\)
−0.698302 + 0.715803i \(0.746061\pi\)
\(32\) 1.89374 0.334768
\(33\) 1.07489 + 10.7146i 0.187115 + 1.86518i
\(34\) 2.89547 8.91135i 0.496570 1.52828i
\(35\) −0.629157 + 1.93635i −0.106347 + 0.327302i
\(36\) 0.788202 + 2.42584i 0.131367 + 0.404306i
\(37\) 8.50888 + 6.18207i 1.39885 + 1.01633i 0.994828 + 0.101577i \(0.0323889\pi\)
0.404024 + 0.914748i \(0.367611\pi\)
\(38\) −5.68800 + 4.13257i −0.922715 + 0.670392i
\(39\) −5.39581 3.92028i −0.864020 0.627748i
\(40\) −1.14601 3.52704i −0.181199 0.557674i
\(41\) 0.614070 6.37361i 0.0959016 0.995391i
\(42\) −5.60332 4.07105i −0.864611 0.628177i
\(43\) 0.218856 + 0.673569i 0.0333752 + 0.102718i 0.966356 0.257207i \(-0.0828022\pi\)
−0.932981 + 0.359925i \(0.882802\pi\)
\(44\) −1.09608 0.238409i −0.165240 0.0359414i
\(45\) 8.90460 6.46957i 1.32742 0.964427i
\(46\) 3.86554 0.569942
\(47\) −4.96998 −0.724946 −0.362473 0.931994i \(-0.618067\pi\)
−0.362473 + 0.931994i \(0.618067\pi\)
\(48\) 14.8120 2.13793
\(49\) −5.05383 −0.721976
\(50\) −3.55048 + 2.57957i −0.502113 + 0.364807i
\(51\) 6.14800 18.9216i 0.860893 2.64955i
\(52\) 0.562063 0.408362i 0.0779440 0.0566297i
\(53\) 7.06598 0.970587 0.485293 0.874351i \(-0.338713\pi\)
0.485293 + 0.874351i \(0.338713\pi\)
\(54\) 6.96788 + 21.4449i 0.948209 + 2.91829i
\(55\) 0.483164 + 4.81624i 0.0651498 + 0.649421i
\(56\) −2.86792 + 2.08366i −0.383241 + 0.278441i
\(57\) −12.0774 + 8.77475i −1.59969 + 1.16224i
\(58\) −1.36484 + 0.991614i −0.179212 + 0.130205i
\(59\) −7.00223 + 5.08741i −0.911612 + 0.662325i −0.941422 0.337231i \(-0.890510\pi\)
0.0298100 + 0.999556i \(0.490510\pi\)
\(60\) 0.495232 + 1.52417i 0.0639341 + 0.196769i
\(61\) −3.74096 11.5135i −0.478980 1.47415i −0.840513 0.541791i \(-0.817747\pi\)
0.361533 0.932359i \(-0.382253\pi\)
\(62\) −7.91751 −1.00552
\(63\) −8.51175 6.18415i −1.07238 0.779130i
\(64\) 1.92465 5.92348i 0.240582 0.740435i
\(65\) −2.42542 1.76217i −0.300836 0.218570i
\(66\) −16.0900 3.49974i −1.98054 0.430788i
\(67\) −0.647587 + 0.470499i −0.0791153 + 0.0574806i −0.626640 0.779309i \(-0.715570\pi\)
0.547525 + 0.836790i \(0.315570\pi\)
\(68\) 1.67663 + 1.21814i 0.203321 + 0.147722i
\(69\) 8.20775 0.988097
\(70\) −2.51870 1.82994i −0.301042 0.218720i
\(71\) 9.27015 1.10016 0.550082 0.835111i \(-0.314596\pi\)
0.550082 + 0.835111i \(0.314596\pi\)
\(72\) 19.1641 2.25851
\(73\) 3.94398 + 12.1383i 0.461608 + 1.42068i 0.863199 + 0.504863i \(0.168457\pi\)
−0.401592 + 0.915819i \(0.631543\pi\)
\(74\) −13.0111 + 9.45312i −1.51251 + 1.09890i
\(75\) −7.53878 + 5.47724i −0.870503 + 0.632458i
\(76\) −0.480537 1.47894i −0.0551214 0.169646i
\(77\) 4.23571 1.86188i 0.482704 0.212181i
\(78\) 8.25084 5.99458i 0.934223 0.678753i
\(79\) −11.5180 8.36829i −1.29587 0.941506i −0.295965 0.955199i \(-0.595641\pi\)
−0.999906 + 0.0136931i \(0.995641\pi\)
\(80\) 6.65801 0.744388
\(81\) 7.80344 + 24.0165i 0.867049 + 2.66850i
\(82\) 8.97885 + 3.90471i 0.991548 + 0.431204i
\(83\) −8.53869 + 6.20372i −0.937243 + 0.680947i −0.947756 0.318998i \(-0.896654\pi\)
0.0105121 + 0.999945i \(0.496654\pi\)
\(84\) 1.23933 0.900428i 0.135222 0.0982448i
\(85\) 2.76353 8.50527i 0.299747 0.922526i
\(86\) −1.08297 −0.116780
\(87\) −2.89798 + 2.10551i −0.310696 + 0.225734i
\(88\) −4.24841 + 7.27866i −0.452882 + 0.775908i
\(89\) −3.65285 + 11.2423i −0.387202 + 1.19168i 0.547669 + 0.836695i \(0.315515\pi\)
−0.934870 + 0.354989i \(0.884485\pi\)
\(90\) 5.20093 + 16.0068i 0.548226 + 1.68727i
\(91\) −0.885555 + 2.72546i −0.0928314 + 0.285706i
\(92\) −0.264201 + 0.813128i −0.0275449 + 0.0847744i
\(93\) −16.8114 −1.74326
\(94\) 2.34843 7.22773i 0.242222 0.745484i
\(95\) −5.42880 + 3.94426i −0.556983 + 0.404672i
\(96\) −1.90002 + 5.84765i −0.193920 + 0.596824i
\(97\) 9.36484 0.950855 0.475428 0.879755i \(-0.342293\pi\)
0.475428 + 0.879755i \(0.342293\pi\)
\(98\) 2.38806 7.34968i 0.241230 0.742430i
\(99\) −24.4416 5.31629i −2.45647 0.534307i
\(100\) −0.299954 0.923162i −0.0299954 0.0923162i
\(101\) −0.564406 + 0.410065i −0.0561605 + 0.0408030i −0.615511 0.788128i \(-0.711050\pi\)
0.559351 + 0.828931i \(0.311050\pi\)
\(102\) 24.6122 + 17.8818i 2.43697 + 1.77056i
\(103\) −7.39784 −0.728931 −0.364465 0.931217i \(-0.618748\pi\)
−0.364465 + 0.931217i \(0.618748\pi\)
\(104\) −1.61303 4.96441i −0.158171 0.486800i
\(105\) −5.34798 3.88554i −0.521910 0.379190i
\(106\) −3.33885 + 10.2759i −0.324297 + 0.998085i
\(107\) −1.33552 0.970315i −0.129110 0.0938039i 0.521356 0.853339i \(-0.325426\pi\)
−0.650466 + 0.759535i \(0.725426\pi\)
\(108\) −4.98725 −0.479898
\(109\) −5.57220 −0.533720 −0.266860 0.963735i \(-0.585986\pi\)
−0.266860 + 0.963735i \(0.585986\pi\)
\(110\) −7.23246 1.57313i −0.689588 0.149992i
\(111\) −27.6267 + 20.0720i −2.62221 + 1.90515i
\(112\) −1.96667 6.05278i −0.185833 0.571934i
\(113\) 7.42603 5.39533i 0.698582 0.507550i −0.180888 0.983504i \(-0.557897\pi\)
0.879470 + 0.475954i \(0.157897\pi\)
\(114\) −7.05408 21.7102i −0.660675 2.03335i
\(115\) 3.68939 0.344037
\(116\) −0.115305 0.354873i −0.0107058 0.0329491i
\(117\) 12.5335 9.10610i 1.15872 0.841859i
\(118\) −4.08980 12.5871i −0.376497 1.15874i
\(119\) −8.54843 −0.783633
\(120\) 12.0409 1.09918
\(121\) 7.43751 8.10453i 0.676137 0.736776i
\(122\) 18.5115 1.67595
\(123\) 19.0649 + 8.29094i 1.71903 + 0.747569i
\(124\) 0.541145 1.66547i 0.0485962 0.149564i
\(125\) −9.29224 + 6.75121i −0.831123 + 0.603846i
\(126\) 13.0155 9.45631i 1.15951 0.842435i
\(127\) 1.15651 3.55936i 0.102623 0.315842i −0.886542 0.462648i \(-0.846899\pi\)
0.989165 + 0.146806i \(0.0468993\pi\)
\(128\) 10.7691 + 7.82419i 0.951861 + 0.691567i
\(129\) −2.29949 −0.202459
\(130\) 3.70875 2.69457i 0.325279 0.236329i
\(131\) 9.59458 + 6.97087i 0.838283 + 0.609048i 0.921890 0.387451i \(-0.126644\pi\)
−0.0836077 + 0.996499i \(0.526644\pi\)
\(132\) 1.83590 3.14538i 0.159794 0.273770i
\(133\) 5.18930 + 3.77024i 0.449969 + 0.326922i
\(134\) −0.378237 1.16409i −0.0326747 0.100562i
\(135\) 6.65036 + 20.4677i 0.572372 + 1.76158i
\(136\) 12.5971 9.15235i 1.08019 0.784808i
\(137\) −3.64394 + 2.64748i −0.311323 + 0.226189i −0.732464 0.680806i \(-0.761630\pi\)
0.421141 + 0.906995i \(0.361630\pi\)
\(138\) −3.87836 + 11.9364i −0.330148 + 1.01609i
\(139\) −7.39739 −0.627438 −0.313719 0.949516i \(-0.601575\pi\)
−0.313719 + 0.949516i \(0.601575\pi\)
\(140\) 0.557081 0.404743i 0.0470819 0.0342070i
\(141\) 4.98646 15.3468i 0.419936 1.29243i
\(142\) −4.38037 + 13.4814i −0.367592 + 1.13133i
\(143\) 0.680066 + 6.77899i 0.0568700 + 0.566887i
\(144\) −10.6319 + 32.7217i −0.885993 + 2.72681i
\(145\) −1.30264 + 0.946427i −0.108179 + 0.0785965i
\(146\) −19.5161 −1.61517
\(147\) 5.07059 15.6057i 0.418216 1.28713i
\(148\) −1.09921 3.38303i −0.0903547 0.278083i
\(149\) 2.41271 7.42557i 0.197657 0.608327i −0.802278 0.596951i \(-0.796379\pi\)
0.999935 0.0113760i \(-0.00362118\pi\)
\(150\) −4.40319 13.5516i −0.359519 1.10649i
\(151\) 16.5902 1.35009 0.675045 0.737776i \(-0.264124\pi\)
0.675045 + 0.737776i \(0.264124\pi\)
\(152\) −11.6836 −0.947669
\(153\) 37.3873 + 27.1635i 3.02258 + 2.19604i
\(154\) 0.706221 + 7.03970i 0.0569089 + 0.567275i
\(155\) −7.55671 −0.606970
\(156\) 0.697052 + 2.14531i 0.0558088 + 0.171762i
\(157\) 10.1464 + 7.37177i 0.809768 + 0.588331i 0.913763 0.406247i \(-0.133163\pi\)
−0.103995 + 0.994578i \(0.533163\pi\)
\(158\) 17.6123 12.7961i 1.40116 1.01800i
\(159\) −7.08942 + 21.8190i −0.562227 + 1.73036i
\(160\) −0.854059 + 2.62852i −0.0675193 + 0.207803i
\(161\) −1.08979 3.35402i −0.0858871 0.264333i
\(162\) −38.6141 −3.03381
\(163\) −0.0842209 0.0611901i −0.00659669 0.00479278i 0.584482 0.811407i \(-0.301298\pi\)
−0.591079 + 0.806614i \(0.701298\pi\)
\(164\) −1.43505 + 1.62185i −0.112059 + 0.126645i
\(165\) −15.3568 3.34026i −1.19552 0.260039i
\(166\) −4.98721 15.3491i −0.387083 1.19132i
\(167\) −7.14194 5.18892i −0.552660 0.401531i 0.276106 0.961127i \(-0.410956\pi\)
−0.828765 + 0.559597i \(0.810956\pi\)
\(168\) −3.55670 10.9464i −0.274405 0.844532i
\(169\) 7.10338 + 5.16091i 0.546414 + 0.396993i
\(170\) 11.0632 + 8.03789i 0.848509 + 0.616478i
\(171\) −10.7155 32.9790i −0.819437 2.52197i
\(172\) 0.0740188 0.227806i 0.00564388 0.0173701i
\(173\) 3.05196 9.39298i 0.232037 0.714135i −0.765464 0.643479i \(-0.777491\pi\)
0.997501 0.0706565i \(-0.0225094\pi\)
\(174\) −1.69263 5.20938i −0.128318 0.394922i
\(175\) 3.23918 + 2.35340i 0.244859 + 0.177901i
\(176\) −10.0710 11.2920i −0.759127 0.851166i
\(177\) −8.68394 26.7264i −0.652725 2.00888i
\(178\) −14.6234 10.6245i −1.09607 0.796343i
\(179\) −4.38596 13.4986i −0.327822 1.00893i −0.970151 0.242504i \(-0.922031\pi\)
0.642328 0.766430i \(-0.277969\pi\)
\(180\) −3.72255 −0.277463
\(181\) −10.0756 −0.748913 −0.374456 0.927245i \(-0.622171\pi\)
−0.374456 + 0.927245i \(0.622171\pi\)
\(182\) −3.54513 2.57569i −0.262783 0.190923i
\(183\) 39.3058 2.90556
\(184\) 5.19690 + 3.77577i 0.383120 + 0.278353i
\(185\) −12.4182 + 9.02235i −0.913004 + 0.663336i
\(186\) 7.94377 24.4484i 0.582465 1.79264i
\(187\) −18.6051 + 8.17820i −1.36054 + 0.598049i
\(188\) 1.35987 + 0.988000i 0.0991784 + 0.0720573i
\(189\) 16.6427 12.0917i 1.21058 0.879539i
\(190\) −3.17081 9.75875i −0.230035 0.707974i
\(191\) 3.77006 + 11.6031i 0.272792 + 0.839567i 0.989795 + 0.142497i \(0.0455133\pi\)
−0.717003 + 0.697070i \(0.754487\pi\)
\(192\) 16.3600 + 11.8863i 1.18068 + 0.857817i
\(193\) 0.136756 0.420890i 0.00984388 0.0302964i −0.946014 0.324126i \(-0.894930\pi\)
0.955858 + 0.293830i \(0.0949298\pi\)
\(194\) −4.42511 + 13.6191i −0.317704 + 0.977794i
\(195\) 7.87485 5.72141i 0.563930 0.409719i
\(196\) 1.38281 + 1.00467i 0.0987721 + 0.0717621i
\(197\) 8.77245 + 6.37356i 0.625011 + 0.454097i 0.854668 0.519175i \(-0.173761\pi\)
−0.229657 + 0.973272i \(0.573761\pi\)
\(198\) 19.2806 33.0328i 1.37021 2.34754i
\(199\) −6.06725 18.6731i −0.430096 1.32370i −0.898029 0.439935i \(-0.855001\pi\)
0.467934 0.883764i \(-0.344999\pi\)
\(200\) −7.29299 −0.515692
\(201\) −0.803116 2.47174i −0.0566474 0.174343i
\(202\) −0.329654 1.01457i −0.0231944 0.0713849i
\(203\) 1.24518 + 0.904673i 0.0873942 + 0.0634956i
\(204\) −5.44369 + 3.95507i −0.381135 + 0.276910i
\(205\) 8.56969 + 3.72678i 0.598533 + 0.260290i
\(206\) 3.49566 10.7585i 0.243554 0.749582i
\(207\) −5.89144 + 18.1320i −0.409483 + 1.26026i
\(208\) 9.37133 0.649785
\(209\) 14.9011 + 3.24114i 1.03073 + 0.224194i
\(210\) 8.17771 5.94145i 0.564316 0.409999i
\(211\) −1.74237 + 5.36247i −0.119950 + 0.369168i −0.992947 0.118557i \(-0.962173\pi\)
0.872997 + 0.487725i \(0.162173\pi\)
\(212\) −1.93337 1.40467i −0.132784 0.0964733i
\(213\) −9.30090 + 28.6252i −0.637287 + 1.96137i
\(214\) 2.04218 1.48373i 0.139600 0.101426i
\(215\) −1.03362 −0.0704924
\(216\) −11.5792 + 35.6370i −0.787863 + 2.42479i
\(217\) 2.23213 + 6.86979i 0.151527 + 0.466352i
\(218\) 2.63300 8.10353i 0.178329 0.548840i
\(219\) −41.4389 −2.80018
\(220\) 0.825237 1.41385i 0.0556374 0.0953218i
\(221\) 3.88974 11.9714i 0.261652 0.805283i
\(222\) −16.1360 49.6614i −1.08297 3.33305i
\(223\) 2.20844 0.147888 0.0739442 0.997262i \(-0.476441\pi\)
0.0739442 + 0.997262i \(0.476441\pi\)
\(224\) 2.64186 0.176517
\(225\) −6.68868 20.5857i −0.445912 1.37238i
\(226\) 4.33734 + 13.3489i 0.288515 + 0.887959i
\(227\) 5.56674 0.369478 0.184739 0.982788i \(-0.440856\pi\)
0.184739 + 0.982788i \(0.440856\pi\)
\(228\) 5.04894 0.334374
\(229\) 7.16609 + 22.0550i 0.473549 + 1.45743i 0.847905 + 0.530148i \(0.177864\pi\)
−0.374356 + 0.927285i \(0.622136\pi\)
\(230\) −1.74332 + 5.36540i −0.114951 + 0.353784i
\(231\) 1.49953 + 14.9475i 0.0986618 + 0.983473i
\(232\) −2.80350 −0.184059
\(233\) −3.61037 + 11.1116i −0.236523 + 0.727944i 0.760392 + 0.649464i \(0.225007\pi\)
−0.996916 + 0.0784800i \(0.974993\pi\)
\(234\) 7.32045 + 22.5300i 0.478553 + 1.47283i
\(235\) 2.24142 6.89837i 0.146214 0.450000i
\(236\) 2.92727 0.190549
\(237\) 37.3965 27.1702i 2.42917 1.76489i
\(238\) 4.03934 12.4318i 0.261831 0.805834i
\(239\) 9.16684 + 6.66010i 0.592954 + 0.430806i 0.843371 0.537332i \(-0.180568\pi\)
−0.250417 + 0.968138i \(0.580568\pi\)
\(240\) −6.68009 + 20.5592i −0.431198 + 1.32709i
\(241\) 23.4187 17.0147i 1.50853 1.09601i 0.541706 0.840568i \(-0.317779\pi\)
0.966824 0.255443i \(-0.0822214\pi\)
\(242\) 8.27185 + 14.6458i 0.531735 + 0.941468i
\(243\) −37.7515 −2.42176
\(244\) −1.26522 + 3.89395i −0.0809975 + 0.249285i
\(245\) 2.27923 7.01476i 0.145615 0.448157i
\(246\) −21.0660 + 23.8081i −1.34312 + 1.51795i
\(247\) −7.64119 + 5.55165i −0.486197 + 0.353243i
\(248\) −10.6444 7.73364i −0.675922 0.491086i
\(249\) −10.5894 32.5909i −0.671077 2.06536i
\(250\) −5.42734 16.7036i −0.343255 1.05643i
\(251\) 21.4257 1.35238 0.676189 0.736728i \(-0.263630\pi\)
0.676189 + 0.736728i \(0.263630\pi\)
\(252\) 1.09958 + 3.38417i 0.0692672 + 0.213182i
\(253\) −5.58060 6.25721i −0.350849 0.393387i
\(254\) 4.62983 + 3.36377i 0.290502 + 0.211062i
\(255\) 23.4907 + 17.0670i 1.47104 + 1.06878i
\(256\) −6.38959 + 4.64231i −0.399349 + 0.290144i
\(257\) −2.06275 + 6.34849i −0.128671 + 0.396008i −0.994552 0.104242i \(-0.966758\pi\)
0.865881 + 0.500250i \(0.166758\pi\)
\(258\) 1.08656 3.34410i 0.0676465 0.208195i
\(259\) 11.8703 + 8.62431i 0.737587 + 0.535888i
\(260\) 0.313325 + 0.964316i 0.0194316 + 0.0598043i
\(261\) −2.57120 7.91333i −0.159153 0.489823i
\(262\) −14.6713 + 10.6593i −0.906394 + 0.658534i
\(263\) 4.93399 + 3.58475i 0.304243 + 0.221045i 0.729422 0.684064i \(-0.239789\pi\)
−0.425179 + 0.905109i \(0.639789\pi\)
\(264\) −18.2132 20.4214i −1.12095 1.25685i
\(265\) −3.18670 + 9.80764i −0.195757 + 0.602479i
\(266\) −7.93506 + 5.76516i −0.486529 + 0.353484i
\(267\) −31.0501 22.5592i −1.90024 1.38060i
\(268\) 0.270722 0.0165370
\(269\) 24.4082 + 17.7336i 1.48819 + 1.08123i 0.974800 + 0.223080i \(0.0716111\pi\)
0.513391 + 0.858155i \(0.328389\pi\)
\(270\) −32.9082 −2.00273
\(271\) −14.1452 −0.859257 −0.429628 0.903006i \(-0.641355\pi\)
−0.429628 + 0.903006i \(0.641355\pi\)
\(272\) 8.63846 + 26.5865i 0.523784 + 1.61204i
\(273\) −7.52743 5.46900i −0.455581 0.330999i
\(274\) −2.12832 6.55031i −0.128577 0.395719i
\(275\) 9.30135 + 2.02314i 0.560893 + 0.122000i
\(276\) −2.24577 1.63165i −0.135180 0.0982138i
\(277\) −0.619953 1.90802i −0.0372494 0.114642i 0.930703 0.365776i \(-0.119196\pi\)
−0.967952 + 0.251134i \(0.919196\pi\)
\(278\) 3.49544 10.7579i 0.209643 0.645214i
\(279\) 12.0670 37.1385i 0.722434 2.22342i
\(280\) −1.59874 4.92041i −0.0955428 0.294051i
\(281\) −2.87359 2.08779i −0.171424 0.124547i 0.498765 0.866737i \(-0.333787\pi\)
−0.670189 + 0.742190i \(0.733787\pi\)
\(282\) 19.9622 + 14.5034i 1.18873 + 0.863666i
\(283\) −5.83623 17.9621i −0.346928 1.06773i −0.960543 0.278130i \(-0.910285\pi\)
0.613615 0.789605i \(-0.289715\pi\)
\(284\) −2.53646 1.84285i −0.150511 0.109353i
\(285\) −6.73263 20.7209i −0.398806 1.22740i
\(286\) −10.1799 2.21423i −0.601949 0.130930i
\(287\) 0.856660 8.89152i 0.0505670 0.524850i
\(288\) −11.5544 8.39477i −0.680850 0.494667i
\(289\) 20.5484 1.20873
\(290\) −0.760838 2.34162i −0.0446780 0.137505i
\(291\) −9.39590 + 28.9176i −0.550797 + 1.69518i
\(292\) 1.33389 4.10528i 0.0780597 0.240243i
\(293\) −13.6689 + 9.93102i −0.798544 + 0.580176i −0.910487 0.413538i \(-0.864293\pi\)
0.111942 + 0.993715i \(0.464293\pi\)
\(294\) 20.2990 + 14.7481i 1.18386 + 0.860128i
\(295\) −3.90343 12.0135i −0.227267 0.699455i
\(296\) −26.7260 −1.55341
\(297\) 24.6539 42.2387i 1.43056 2.45094i
\(298\) 9.65879 + 7.01752i 0.559519 + 0.406514i
\(299\) 5.19291 0.300314
\(300\) 3.15157 0.181956
\(301\) 0.305315 + 0.939663i 0.0175981 + 0.0541613i
\(302\) −7.83926 + 24.1268i −0.451099 + 1.38834i
\(303\) −0.699959 2.15425i −0.0402116 0.123758i
\(304\) 6.48188 19.9492i 0.371761 1.14416i
\(305\) 17.6680 1.01166
\(306\) −57.1697 + 41.5362i −3.26817 + 2.37447i
\(307\) 8.93055 27.4854i 0.509693 1.56868i −0.283041 0.959108i \(-0.591343\pi\)
0.792734 0.609567i \(-0.208657\pi\)
\(308\) −1.52909 0.332592i −0.0871280 0.0189512i
\(309\) 7.42238 22.8437i 0.422245 1.29953i
\(310\) 3.57073 10.9896i 0.202804 0.624166i
\(311\) −10.8743 + 7.90067i −0.616628 + 0.448006i −0.851742 0.523962i \(-0.824454\pi\)
0.235114 + 0.971968i \(0.424454\pi\)
\(312\) 16.9479 0.959488
\(313\) −8.82906 + 27.1730i −0.499048 + 1.53591i 0.311504 + 0.950245i \(0.399167\pi\)
−0.810552 + 0.585666i \(0.800833\pi\)
\(314\) −15.5150 + 11.2723i −0.875563 + 0.636134i
\(315\) 12.4224 9.02539i 0.699922 0.508523i
\(316\) 1.48794 + 4.57940i 0.0837029 + 0.257611i
\(317\) 6.16623 + 18.9777i 0.346330 + 1.06589i 0.960868 + 0.277007i \(0.0893424\pi\)
−0.614538 + 0.788887i \(0.710658\pi\)
\(318\) −28.3810 20.6200i −1.59153 1.15631i
\(319\) 3.57553 + 0.777714i 0.200191 + 0.0435436i
\(320\) 7.35384 + 5.34288i 0.411092 + 0.298676i
\(321\) 4.33618 3.15042i 0.242022 0.175839i
\(322\) 5.39263 0.300519
\(323\) −22.7936 16.5605i −1.26827 0.921454i
\(324\) 2.63919 8.12259i 0.146622 0.451255i
\(325\) −4.76967 + 3.46536i −0.264573 + 0.192224i
\(326\) 0.128784 0.0935670i 0.00713268 0.00518220i
\(327\) 5.59068 17.2063i 0.309165 0.951513i
\(328\) 8.25729 + 14.0199i 0.455933 + 0.774119i
\(329\) −6.93338 −0.382249
\(330\) 12.1141 20.7547i 0.666860 1.14251i
\(331\) −9.92352 −0.545446 −0.272723 0.962093i \(-0.587924\pi\)
−0.272723 + 0.962093i \(0.587924\pi\)
\(332\) 3.56959 0.195907
\(333\) −24.5114 75.4383i −1.34322 4.13400i
\(334\) 10.9209 7.93448i 0.597564 0.434155i
\(335\) −0.361001 1.11105i −0.0197236 0.0607030i
\(336\) 20.6635 1.12729
\(337\) −2.13609 6.57420i −0.116360 0.358120i 0.875868 0.482551i \(-0.160290\pi\)
−0.992228 + 0.124431i \(0.960290\pi\)
\(338\) −10.8619 + 7.89165i −0.590811 + 0.429249i
\(339\) 9.20953 + 28.3440i 0.500193 + 1.53944i
\(340\) −2.44694 + 1.77781i −0.132704 + 0.0964151i
\(341\) 11.4304 + 12.8162i 0.618988 + 0.694036i
\(342\) 53.0240 2.86721
\(343\) −16.8157 −0.907964
\(344\) −1.45597 1.05782i −0.0785004 0.0570339i
\(345\) −3.70163 + 11.3924i −0.199289 + 0.613348i
\(346\) 12.2179 + 8.87682i 0.656838 + 0.477221i
\(347\) −0.363703 1.11936i −0.0195246 0.0600906i 0.940819 0.338908i \(-0.110058\pi\)
−0.960344 + 0.278817i \(0.910058\pi\)
\(348\) 1.21150 0.0649431
\(349\) 26.2393 + 19.0640i 1.40456 + 1.02047i 0.994086 + 0.108600i \(0.0346367\pi\)
0.410474 + 0.911872i \(0.365363\pi\)
\(350\) −4.95310 + 3.59864i −0.264754 + 0.192355i
\(351\) 9.36057 + 28.8089i 0.499630 + 1.53770i
\(352\) 5.74984 2.52744i 0.306467 0.134713i
\(353\) −4.25066 + 13.0822i −0.226240 + 0.696295i 0.771923 + 0.635716i \(0.219295\pi\)
−0.998163 + 0.0605796i \(0.980705\pi\)
\(354\) 42.9710 2.28389
\(355\) −4.18076 + 12.8670i −0.221892 + 0.682912i
\(356\) 3.23439 2.34992i 0.171422 0.124545i
\(357\) 8.57678 26.3966i 0.453932 1.39706i
\(358\) 21.7032 1.14705
\(359\) −7.47957 + 23.0197i −0.394756 + 1.21494i 0.534395 + 0.845235i \(0.320540\pi\)
−0.929151 + 0.369700i \(0.879460\pi\)
\(360\) −8.64286 + 26.6000i −0.455519 + 1.40194i
\(361\) 0.661530 + 2.03598i 0.0348174 + 0.107157i
\(362\) 4.76096 14.6527i 0.250230 0.770130i
\(363\) 17.5637 + 31.0977i 0.921857 + 1.63220i
\(364\) 0.784107 0.569687i 0.0410984 0.0298597i
\(365\) −18.6268 −0.974971
\(366\) −18.5729 + 57.1616i −0.970822 + 2.98788i
\(367\) 26.7165 19.4107i 1.39459 1.01323i 0.399247 0.916844i \(-0.369272\pi\)
0.995344 0.0963860i \(-0.0307283\pi\)
\(368\) −9.33005 + 6.77868i −0.486363 + 0.353363i
\(369\) −32.0004 + 36.1657i −1.66587 + 1.88271i
\(370\) −7.25312 22.3228i −0.377072 1.16051i
\(371\) 9.85741 0.511771
\(372\) 4.59986 + 3.34199i 0.238492 + 0.173274i
\(373\) −16.7099 + 12.1404i −0.865205 + 0.628608i −0.929296 0.369336i \(-0.879585\pi\)
0.0640909 + 0.997944i \(0.479585\pi\)
\(374\) −3.10203 30.9214i −0.160402 1.59891i
\(375\) −11.5239 35.4670i −0.595094 1.83151i
\(376\) 10.2172 7.42320i 0.526910 0.382822i
\(377\) −1.83351 + 1.33212i −0.0944305 + 0.0686077i
\(378\) 9.72056 + 29.9168i 0.499972 + 1.53875i
\(379\) 27.9248 1.43440 0.717200 0.696868i \(-0.245423\pi\)
0.717200 + 0.696868i \(0.245423\pi\)
\(380\) 2.26950 0.116423
\(381\) 9.83059 + 7.14234i 0.503636 + 0.365913i
\(382\) −18.6555 −0.954500
\(383\) 8.32597 + 6.04917i 0.425437 + 0.309098i 0.779822 0.626002i \(-0.215310\pi\)
−0.354385 + 0.935100i \(0.615310\pi\)
\(384\) −34.9651 + 25.4036i −1.78430 + 1.29637i
\(385\) 0.674039 + 6.71890i 0.0343522 + 0.342427i
\(386\) 0.547472 + 0.397762i 0.0278656 + 0.0202455i
\(387\) 1.65055 5.07987i 0.0839022 0.258224i
\(388\) −2.56237 1.86167i −0.130085 0.0945120i
\(389\) 6.42844 0.325935 0.162967 0.986631i \(-0.447893\pi\)
0.162967 + 0.986631i \(0.447893\pi\)
\(390\) 4.59948 + 14.1557i 0.232904 + 0.716804i
\(391\) 4.78681 + 14.7323i 0.242079 + 0.745044i
\(392\) 10.3895 7.54844i 0.524751 0.381254i
\(393\) −31.1517 + 22.6330i −1.57140 + 1.14169i
\(394\) −13.4141 + 9.74593i −0.675794 + 0.490993i
\(395\) 16.8098 12.2130i 0.845791 0.614503i
\(396\) 5.63077 + 6.31346i 0.282957 + 0.317263i
\(397\) 2.69628 + 8.29830i 0.135323 + 0.416480i 0.995640 0.0932787i \(-0.0297347\pi\)
−0.860318 + 0.509759i \(0.829735\pi\)
\(398\) 30.0228 1.50491
\(399\) −16.8486 + 12.2412i −0.843486 + 0.612828i
\(400\) 4.04602 12.4524i 0.202301 0.622619i
\(401\) 3.67567 2.67053i 0.183554 0.133360i −0.492214 0.870474i \(-0.663812\pi\)
0.675768 + 0.737114i \(0.263812\pi\)
\(402\) 3.97409 0.198210
\(403\) −10.6363 −0.529831
\(404\) 0.235949 0.0117389
\(405\) −36.8544 −1.83131
\(406\) −1.90402 + 1.38335i −0.0944951 + 0.0686547i
\(407\) 34.0858 + 7.41400i 1.68957 + 0.367498i
\(408\) 15.6226 + 48.0813i 0.773432 + 2.38038i
\(409\) 17.0061 + 12.3557i 0.840898 + 0.610948i 0.922621 0.385707i \(-0.126042\pi\)
−0.0817236 + 0.996655i \(0.526042\pi\)
\(410\) −9.46916 + 10.7017i −0.467649 + 0.528521i
\(411\) −4.51910 13.9084i −0.222911 0.686049i
\(412\) 2.02417 + 1.47064i 0.0997237 + 0.0724535i
\(413\) −9.76847 + 7.09721i −0.480675 + 0.349231i
\(414\) −23.5851 17.1356i −1.15915 0.842169i
\(415\) −4.75995 14.6496i −0.233657 0.719121i
\(416\) −1.20211 + 3.69972i −0.0589383 + 0.181394i
\(417\) 7.42193 22.8423i 0.363453 1.11859i
\(418\) −11.7547 + 20.1389i −0.574939 + 0.985025i
\(419\) 35.4542 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(420\) 0.690874 + 2.12629i 0.0337112 + 0.103752i
\(421\) −31.6437 + 22.9905i −1.54222 + 1.12049i −0.593294 + 0.804986i \(0.702173\pi\)
−0.948925 + 0.315502i \(0.897827\pi\)
\(422\) −6.97522 5.06780i −0.339549 0.246696i
\(423\) 30.3237 + 22.0315i 1.47439 + 1.07121i
\(424\) −14.5261 + 10.5538i −0.705448 + 0.512538i
\(425\) −14.2279 10.3372i −0.690155 0.501427i
\(426\) −37.2342 27.0522i −1.80400 1.31068i
\(427\) −5.21883 16.0619i −0.252557 0.777290i
\(428\) 0.172528 + 0.530988i 0.00833948 + 0.0256663i
\(429\) −21.6151 4.70150i −1.04359 0.226991i
\(430\) 0.488411 1.50317i 0.0235533 0.0724895i
\(431\) 0.304143 0.220973i 0.0146501 0.0106439i −0.580436 0.814306i \(-0.697118\pi\)
0.595086 + 0.803662i \(0.297118\pi\)
\(432\) −54.4243 39.5416i −2.61849 1.90244i
\(433\) 21.3624 15.5207i 1.02661 0.745878i 0.0589845 0.998259i \(-0.481214\pi\)
0.967628 + 0.252381i \(0.0812137\pi\)
\(434\) −11.0453 −0.530193
\(435\) −1.61550 4.97199i −0.0774572 0.238389i
\(436\) 1.52464 + 1.10772i 0.0730172 + 0.0530501i
\(437\) 3.59179 11.0544i 0.171819 0.528803i
\(438\) 19.5809 60.2637i 0.935610 2.87951i
\(439\) −21.5845 + 15.6821i −1.03017 + 0.748465i −0.968343 0.249622i \(-0.919694\pi\)
−0.0618301 + 0.998087i \(0.519694\pi\)
\(440\) −8.18685 9.17945i −0.390293 0.437613i
\(441\) 30.8354 + 22.4032i 1.46835 + 1.06682i
\(442\) 15.5718 + 11.3135i 0.740673 + 0.538131i
\(443\) −2.17703 + 1.58170i −0.103434 + 0.0751489i −0.638300 0.769788i \(-0.720362\pi\)
0.534866 + 0.844937i \(0.320362\pi\)
\(444\) 11.5493 0.548105
\(445\) −13.9571 10.1404i −0.661628 0.480701i
\(446\) −1.04354 + 3.21169i −0.0494132 + 0.152078i
\(447\) 20.5087 + 14.9004i 0.970026 + 0.704765i
\(448\) 2.68499 8.26356i 0.126854 0.390417i
\(449\) 6.96813 21.4457i 0.328846 1.01208i −0.640828 0.767684i \(-0.721409\pi\)
0.969674 0.244400i \(-0.0785911\pi\)
\(450\) 33.0979 1.56025
\(451\) −6.64197 20.1714i −0.312758 0.949833i
\(452\) −3.10444 −0.146021
\(453\) −16.6452 + 51.2287i −0.782061 + 2.40694i
\(454\) −2.63042 + 8.09560i −0.123452 + 0.379945i
\(455\) −3.38358 2.45832i −0.158625 0.115248i
\(456\) 11.7224 36.0779i 0.548952 1.68950i
\(457\) 6.02583 + 4.37802i 0.281876 + 0.204795i 0.719735 0.694249i \(-0.244263\pi\)
−0.437859 + 0.899044i \(0.644263\pi\)
\(458\) −35.4602 −1.65695
\(459\) −73.1022 + 53.1118i −3.41212 + 2.47905i
\(460\) −1.00948 0.733427i −0.0470671 0.0341962i
\(461\) −11.4789 8.33991i −0.534626 0.388428i 0.287459 0.957793i \(-0.407189\pi\)
−0.822085 + 0.569364i \(0.807189\pi\)
\(462\) −22.4464 4.88231i −1.04430 0.227146i
\(463\) −13.2782 + 9.64721i −0.617092 + 0.448344i −0.851905 0.523697i \(-0.824552\pi\)
0.234812 + 0.972041i \(0.424552\pi\)
\(464\) 1.55533 4.78682i 0.0722045 0.222222i
\(465\) 7.58178 23.3343i 0.351597 1.08210i
\(466\) −14.4534 10.5010i −0.669539 0.486449i
\(467\) −10.2489 31.5429i −0.474263 1.45963i −0.846949 0.531674i \(-0.821563\pi\)
0.372686 0.927958i \(-0.378437\pi\)
\(468\) −5.23960 −0.242200
\(469\) −0.903417 + 0.656371i −0.0417159 + 0.0303084i
\(470\) 8.97304 + 6.51929i 0.413895 + 0.300713i
\(471\) −32.9433 + 23.9347i −1.51795 + 1.10285i
\(472\) 6.79640 20.9172i 0.312830 0.962791i
\(473\) 1.56347 + 1.75302i 0.0718882 + 0.0806041i
\(474\) 21.8423 + 67.2236i 1.00325 + 3.08768i
\(475\) 4.07784 + 12.5503i 0.187104 + 0.575847i
\(476\) 2.33899 + 1.69937i 0.107207 + 0.0778907i
\(477\) −43.1123 31.3229i −1.97397 1.43418i
\(478\) −14.0172 + 10.1841i −0.641132 + 0.465810i
\(479\) 4.31736 + 3.13674i 0.197265 + 0.143321i 0.682033 0.731321i \(-0.261096\pi\)
−0.484768 + 0.874643i \(0.661096\pi\)
\(480\) −7.25970 5.27448i −0.331359 0.240746i
\(481\) −17.4790 + 12.6992i −0.796972 + 0.579034i
\(482\) 13.6782 + 42.0972i 0.623025 + 1.91747i
\(483\) 11.4502 0.521004
\(484\) −3.64615 + 0.739000i −0.165734 + 0.0335909i
\(485\) −4.22346 + 12.9985i −0.191778 + 0.590231i
\(486\) 17.8385 54.9012i 0.809170 2.49037i
\(487\) 5.91163 + 18.1941i 0.267882 + 0.824455i 0.991015 + 0.133747i \(0.0427010\pi\)
−0.723134 + 0.690708i \(0.757299\pi\)
\(488\) 24.8872 + 18.0816i 1.12659 + 0.818516i
\(489\) 0.273449 0.198672i 0.0123658 0.00898427i
\(490\) 9.12443 + 6.62929i 0.412200 + 0.299481i
\(491\) 1.26884 + 3.90510i 0.0572621 + 0.176235i 0.975597 0.219570i \(-0.0704656\pi\)
−0.918335 + 0.395805i \(0.870466\pi\)
\(492\) −3.56828 6.05852i −0.160871 0.273139i
\(493\) −5.46935 3.97372i −0.246327 0.178967i
\(494\) −4.46300 13.7357i −0.200800 0.617999i
\(495\) 18.4020 31.5275i 0.827109 1.41706i
\(496\) 19.1101 13.8843i 0.858068 0.623423i
\(497\) 12.9323 0.580095
\(498\) 52.4000 2.34810
\(499\) −15.4707 −0.692563 −0.346281 0.938131i \(-0.612556\pi\)
−0.346281 + 0.938131i \(0.612556\pi\)
\(500\) 3.88461 0.173725
\(501\) 23.1885 16.8474i 1.03598 0.752686i
\(502\) −10.1242 + 31.1590i −0.451863 + 1.39069i
\(503\) 18.1406 13.1799i 0.808850 0.587664i −0.104647 0.994509i \(-0.533371\pi\)
0.913497 + 0.406845i \(0.133371\pi\)
\(504\) 26.7350 1.19087
\(505\) −0.314632 0.968337i −0.0140009 0.0430904i
\(506\) 11.7367 5.15907i 0.521760 0.229349i
\(507\) −23.0633 + 16.7564i −1.02428 + 0.744180i
\(508\) −1.02402 + 0.743993i −0.0454335 + 0.0330094i
\(509\) 2.06201 1.49813i 0.0913968 0.0664037i −0.541148 0.840927i \(-0.682010\pi\)
0.632545 + 0.774523i \(0.282010\pi\)
\(510\) −35.9200 + 26.0974i −1.59057 + 1.15561i
\(511\) 5.50205 + 16.9336i 0.243397 + 0.749097i
\(512\) 4.49486 + 13.8338i 0.198647 + 0.611372i
\(513\) 67.8012 2.99349
\(514\) −8.25777 5.99962i −0.364235 0.264632i
\(515\) 3.33636 10.2683i 0.147018 0.452474i
\(516\) 0.629177 + 0.457124i 0.0276980 + 0.0201238i
\(517\) −15.0900 + 6.63309i −0.663659 + 0.291723i
\(518\) −18.1512 + 13.1876i −0.797517 + 0.579430i
\(519\) 25.9424 + 18.8483i 1.13875 + 0.827347i
\(520\) 7.61811 0.334076
\(521\) 36.0574 + 26.1972i 1.57970 + 1.14772i 0.917035 + 0.398806i \(0.130575\pi\)
0.662667 + 0.748914i \(0.269425\pi\)
\(522\) 12.7232 0.556877
\(523\) −19.9267 −0.871332 −0.435666 0.900108i \(-0.643487\pi\)
−0.435666 + 0.900108i \(0.643487\pi\)
\(524\) −1.23947 3.81469i −0.0541464 0.166645i
\(525\) −10.5170 + 7.64104i −0.458999 + 0.333482i
\(526\) −7.54466 + 5.48152i −0.328963 + 0.239006i
\(527\) −9.80449 30.1751i −0.427090 1.31445i
\(528\) 44.9728 19.7686i 1.95719 0.860318i
\(529\) 13.4373 9.76280i 0.584233 0.424470i
\(530\) −12.7573 9.26870i −0.554140 0.402606i
\(531\) 65.2754 2.83271
\(532\) −0.670374 2.06320i −0.0290644 0.0894510i
\(533\) 12.0621 + 5.24554i 0.522466 + 0.227210i
\(534\) 47.4794 34.4958i 2.05463 1.49278i
\(535\) 1.94912 1.41612i 0.0842677 0.0612240i
\(536\) 0.628551 1.93448i 0.0271493 0.0835569i
\(537\) 46.0828 1.98862
\(538\) −37.3230 + 27.1167i −1.60911 + 1.16909i
\(539\) −15.3446 + 6.74501i −0.660940 + 0.290528i
\(540\) 2.24921 6.92235i 0.0967905 0.297890i
\(541\) −10.6140 32.6666i −0.456332 1.40445i −0.869564 0.493820i \(-0.835600\pi\)
0.413232 0.910626i \(-0.364400\pi\)
\(542\) 6.68392 20.5710i 0.287099 0.883600i
\(543\) 10.1090 31.1123i 0.433819 1.33516i
\(544\) −11.6042 −0.497526
\(545\) 2.51301 7.73426i 0.107646 0.331299i
\(546\) 11.5103 8.36276i 0.492597 0.357893i
\(547\) 5.30931 16.3404i 0.227010 0.698664i −0.771072 0.636749i \(-0.780279\pi\)
0.998081 0.0619159i \(-0.0197211\pi\)
\(548\) 1.52334 0.0650740
\(549\) −28.2133 + 86.8315i −1.20411 + 3.70588i
\(550\) −7.33732 + 12.5708i −0.312864 + 0.536020i
\(551\) 1.56756 + 4.82446i 0.0667804 + 0.205529i
\(552\) −16.8733 + 12.2592i −0.718175 + 0.521785i
\(553\) −16.0682 11.6742i −0.683287 0.496437i
\(554\) 3.06774 0.130336
\(555\) −15.4007 47.3984i −0.653722 2.01195i
\(556\) 2.02405 + 1.47055i 0.0858386 + 0.0623654i
\(557\) 7.39056 22.7458i 0.313148 0.963771i −0.663362 0.748299i \(-0.730871\pi\)
0.976510 0.215472i \(-0.0691291\pi\)
\(558\) 48.3078 + 35.0976i 2.04503 + 1.48580i
\(559\) −1.45485 −0.0615336
\(560\) 9.28827 0.392501
\(561\) −6.58658 65.6559i −0.278086 2.77199i
\(562\) 4.39407 3.19248i 0.185352 0.134666i
\(563\) −13.1809 40.5667i −0.555510 1.70968i −0.694592 0.719404i \(-0.744415\pi\)
0.139082 0.990281i \(-0.455585\pi\)
\(564\) −4.41522 + 3.20784i −0.185914 + 0.135075i
\(565\) 4.13969 + 12.7406i 0.174158 + 0.536003i
\(566\) 28.8797 1.21390
\(567\) 10.8862 + 33.5043i 0.457178 + 1.40705i
\(568\) −19.0573 + 13.8460i −0.799628 + 0.580964i
\(569\) −11.2453 34.6094i −0.471427 1.45090i −0.850716 0.525625i \(-0.823832\pi\)
0.379289 0.925278i \(-0.376168\pi\)
\(570\) 33.3153 1.39542
\(571\) 7.55671 0.316238 0.158119 0.987420i \(-0.449457\pi\)
0.158119 + 0.987420i \(0.449457\pi\)
\(572\) 1.16154 1.99003i 0.0485666 0.0832075i
\(573\) −39.6115 −1.65480
\(574\) 12.5260 + 5.44728i 0.522824 + 0.227365i
\(575\) 2.24201 6.90021i 0.0934984 0.287758i
\(576\) −38.0013 + 27.6096i −1.58339 + 1.15040i
\(577\) −15.4574 + 11.2305i −0.643502 + 0.467531i −0.861051 0.508518i \(-0.830194\pi\)
0.217550 + 0.976049i \(0.430194\pi\)
\(578\) −9.70962 + 29.8831i −0.403867 + 1.24297i
\(579\) 1.16246 + 0.844573i 0.0483100 + 0.0350993i
\(580\) 0.544569 0.0226120
\(581\) −11.9119 + 8.65452i −0.494190 + 0.359050i
\(582\) −37.6145 27.3285i −1.55917 1.13280i
\(583\) 21.4540 9.43049i 0.888534 0.390571i
\(584\) −26.2378 19.0629i −1.08573 0.788828i
\(585\) 6.98686 + 21.5033i 0.288871 + 0.889054i
\(586\) −7.98361 24.5710i −0.329800 1.01502i
\(587\) 8.97312 6.51935i 0.370360 0.269082i −0.387000 0.922080i \(-0.626489\pi\)
0.757360 + 0.652997i \(0.226489\pi\)
\(588\) −4.48971 + 3.26196i −0.185152 + 0.134521i
\(589\) −7.35681 + 22.6419i −0.303132 + 0.932944i
\(590\) 19.3155 0.795207
\(591\) −28.4824 + 20.6937i −1.17161 + 0.851224i
\(592\) 14.8271 45.6331i 0.609389 1.87551i
\(593\) 12.3266 37.9373i 0.506191 1.55790i −0.292567 0.956245i \(-0.594509\pi\)
0.798758 0.601652i \(-0.205491\pi\)
\(594\) 49.7773 + 55.8124i 2.04239 + 2.29001i
\(595\) 3.85527 11.8653i 0.158051 0.486430i
\(596\) −2.13632 + 1.55212i −0.0875069 + 0.0635775i
\(597\) 63.7478 2.60902
\(598\) −2.45378 + 7.55195i −0.100342 + 0.308822i
\(599\) 1.35843 + 4.18081i 0.0555038 + 0.170823i 0.974965 0.222357i \(-0.0713750\pi\)
−0.919462 + 0.393180i \(0.871375\pi\)
\(600\) 7.31718 22.5200i 0.298723 0.919374i
\(601\) −11.1747 34.3922i −0.455826 1.40289i −0.870162 0.492765i \(-0.835986\pi\)
0.414336 0.910124i \(-0.364014\pi\)
\(602\) −1.51080 −0.0615757
\(603\) 6.03686 0.245840
\(604\) −4.53934 3.29803i −0.184703 0.134195i
\(605\) 7.89491 + 13.9784i 0.320974 + 0.568303i
\(606\) 3.46363 0.140700
\(607\) 9.60749 + 29.5688i 0.389956 + 1.20016i 0.932821 + 0.360341i \(0.117340\pi\)
−0.542865 + 0.839820i \(0.682660\pi\)
\(608\) 7.04429 + 5.11798i 0.285684 + 0.207561i
\(609\) −4.04284 + 2.93729i −0.163824 + 0.119025i
\(610\) −8.34853 + 25.6941i −0.338022 + 1.04033i
\(611\) 3.15486 9.70965i 0.127632 0.392810i
\(612\) −4.82984 14.8647i −0.195235 0.600871i
\(613\) −44.4433 −1.79505 −0.897524 0.440966i \(-0.854636\pi\)
−0.897524 + 0.440966i \(0.854636\pi\)
\(614\) 35.7516 + 25.9750i 1.44282 + 1.04827i
\(615\) −20.1060 + 22.7231i −0.810753 + 0.916286i
\(616\) −5.92676 + 10.1541i −0.238796 + 0.409121i
\(617\) −7.87518 24.2373i −0.317043 0.975758i −0.974905 0.222620i \(-0.928539\pi\)
0.657863 0.753138i \(-0.271461\pi\)
\(618\) 29.7139 + 21.5884i 1.19527 + 0.868414i
\(619\) −5.75234 17.7039i −0.231206 0.711579i −0.997602 0.0692107i \(-0.977952\pi\)
0.766396 0.642368i \(-0.222048\pi\)
\(620\) 2.06764 + 1.50223i 0.0830384 + 0.0603309i
\(621\) −30.1580 21.9111i −1.21020 0.879262i
\(622\) −6.35140 19.5476i −0.254668 0.783787i
\(623\) −5.09592 + 15.6836i −0.204164 + 0.628352i
\(624\) −9.40241 + 28.9377i −0.376398 + 1.15843i
\(625\) −0.745566 2.29462i −0.0298227 0.0917847i
\(626\) −35.3453 25.6798i −1.41268 1.02637i
\(627\) −24.9588 + 42.7612i −0.996760 + 1.70772i
\(628\) −1.31075 4.03407i −0.0523046 0.160977i
\(629\) −52.1397 37.8817i −2.07895 1.51044i
\(630\) 7.25557 + 22.3303i 0.289069 + 0.889662i
\(631\) 38.1754 1.51974 0.759868 0.650077i \(-0.225263\pi\)
0.759868 + 0.650077i \(0.225263\pi\)
\(632\) 36.1773 1.43906
\(633\) −14.8106 10.7605i −0.588668 0.427692i
\(634\) −30.5126 −1.21181
\(635\) 4.41885 + 3.21049i 0.175357 + 0.127404i
\(636\) 6.27726 4.56070i 0.248910 0.180843i
\(637\) 3.20808 9.87347i 0.127109 0.391201i
\(638\) −2.82054 + 4.83234i −0.111666 + 0.191314i
\(639\) −56.5607 41.0938i −2.23751 1.62564i
\(640\) −15.7168 + 11.4189i −0.621262 + 0.451373i
\(641\) −2.28202 7.02332i −0.0901342 0.277404i 0.895821 0.444415i \(-0.146589\pi\)
−0.985955 + 0.167011i \(0.946589\pi\)
\(642\) 2.53264 + 7.79467i 0.0999555 + 0.307631i
\(643\) −25.2655 18.3565i −0.996375 0.723909i −0.0350672 0.999385i \(-0.511165\pi\)
−0.961308 + 0.275476i \(0.911165\pi\)
\(644\) −0.368574 + 1.13436i −0.0145239 + 0.0446999i
\(645\) 1.03705 3.19171i 0.0408338 0.125674i
\(646\) 34.8542 25.3231i 1.37132 0.996323i
\(647\) −36.0624 26.2009i −1.41776 1.03006i −0.992136 0.125162i \(-0.960055\pi\)
−0.425623 0.904901i \(-0.639945\pi\)
\(648\) −51.9134 37.7173i −2.03935 1.48168i
\(649\) −14.4706 + 24.7920i −0.568021 + 0.973172i
\(650\) −2.78583 8.57390i −0.109269 0.336296i
\(651\) −23.4527 −0.919184
\(652\) 0.0108800 + 0.0334852i 0.000426094 + 0.00131138i
\(653\) −5.15491 15.8652i −0.201727 0.620853i −0.999832 0.0183338i \(-0.994164\pi\)
0.798105 0.602519i \(-0.205836\pi\)
\(654\) 22.3811 + 16.2608i 0.875170 + 0.635849i
\(655\) −14.0027 + 10.1736i −0.547131 + 0.397514i
\(656\) −28.5192 + 6.32087i −1.11349 + 0.246789i
\(657\) 29.7444 91.5438i 1.16044 3.57146i
\(658\) 3.27619 10.0831i 0.127719 0.393079i
\(659\) 15.2429 0.593777 0.296889 0.954912i \(-0.404051\pi\)
0.296889 + 0.954912i \(0.404051\pi\)
\(660\) 3.53785 + 3.96678i 0.137710 + 0.154407i
\(661\) 18.5964 13.5111i 0.723315 0.525519i −0.164126 0.986439i \(-0.552480\pi\)
0.887442 + 0.460920i \(0.152480\pi\)
\(662\) 4.68910 14.4316i 0.182247 0.560899i
\(663\) 33.0638 + 24.0222i 1.28409 + 0.932946i
\(664\) 8.28771 25.5069i 0.321625 0.989861i
\(665\) −7.57346 + 5.50244i −0.293686 + 0.213376i
\(666\) 121.291 4.69992
\(667\) 0.861853 2.65251i 0.0333711 0.102706i
\(668\) 0.922624 + 2.83954i 0.0356974 + 0.109865i
\(669\) −2.21577 + 6.81944i −0.0856666 + 0.263655i
\(670\) 1.78636 0.0690129
\(671\) −26.7247 29.9649i −1.03170 1.15678i
\(672\) −2.65062 + 8.15778i −0.102250 + 0.314693i
\(673\) 6.96063 + 21.4226i 0.268313 + 0.825781i 0.990912 + 0.134514i \(0.0429473\pi\)
−0.722599 + 0.691267i \(0.757053\pi\)
\(674\) 10.5701 0.407144
\(675\) 42.3218 1.62897
\(676\) −0.917643 2.82422i −0.0352940 0.108624i
\(677\) −5.66931 17.4483i −0.217889 0.670594i −0.998936 0.0461214i \(-0.985314\pi\)
0.781047 0.624473i \(-0.214686\pi\)
\(678\) −45.5718 −1.75018
\(679\) 13.0644 0.501367
\(680\) 7.02235 + 21.6126i 0.269295 + 0.828804i
\(681\) −5.58521 + 17.1895i −0.214026 + 0.658703i
\(682\) −24.0395 + 10.5670i −0.920518 + 0.404630i
\(683\) 5.45248 0.208633 0.104317 0.994544i \(-0.466734\pi\)
0.104317 + 0.994544i \(0.466734\pi\)
\(684\) −3.62408 + 11.1538i −0.138570 + 0.426475i
\(685\) −2.03134 6.25182i −0.0776135 0.238870i
\(686\) 7.94583 24.4548i 0.303373 0.933687i
\(687\) −75.2932 −2.87262
\(688\) 2.61391 1.89912i 0.0996546 0.0724033i
\(689\) −4.48536 + 13.8045i −0.170879 + 0.525911i
\(690\) −14.8187 10.7664i −0.564137 0.409870i
\(691\) 0.00409174 0.0125931i 0.000155657 0.000479063i −0.950979 0.309257i \(-0.899920\pi\)
0.951134 + 0.308777i \(0.0999198\pi\)
\(692\) −2.70233 + 1.96336i −0.102727 + 0.0746357i
\(693\) −34.0973 7.41650i −1.29525 0.281730i
\(694\) 1.79973 0.0683167
\(695\) 3.33616 10.2676i 0.126548 0.389474i
\(696\) 2.81280 8.65691i 0.106619 0.328139i
\(697\) −3.76282 + 39.0554i −0.142527 + 1.47933i
\(698\) −40.1231 + 29.1511i −1.51868 + 1.10339i
\(699\) −30.6890 22.2969i −1.16077 0.843346i
\(700\) −0.418451 1.28786i −0.0158160 0.0486765i
\(701\) −2.42424 7.46106i −0.0915624 0.281800i 0.894780 0.446507i \(-0.147332\pi\)
−0.986343 + 0.164707i \(0.947332\pi\)
\(702\) −46.3192 −1.74821
\(703\) 14.9437 + 45.9919i 0.563612 + 1.73462i
\(704\) −2.06195 20.5538i −0.0777128 0.774651i
\(705\) 19.0526 + 13.8425i 0.717562 + 0.521339i
\(706\) −17.0166 12.3633i −0.640429 0.465299i
\(707\) −0.787376 + 0.572062i −0.0296123 + 0.0215146i
\(708\) −2.93698 + 9.03909i −0.110378 + 0.339710i
\(709\) 13.0234 40.0818i 0.489103 1.50531i −0.336845 0.941560i \(-0.609360\pi\)
0.825949 0.563745i \(-0.190640\pi\)
\(710\) −16.7368 12.1600i −0.628120 0.456356i
\(711\) 33.1796 + 102.116i 1.24433 + 3.82966i
\(712\) −9.28219 28.5676i −0.347865 1.07062i
\(713\) 10.5894 7.69367i 0.396577 0.288130i
\(714\) 34.3353 + 24.9461i 1.28497 + 0.933584i
\(715\) −9.71600 2.11333i −0.363358 0.0790339i
\(716\) −1.48337 + 4.56534i −0.0554361 + 0.170615i
\(717\) −29.7629 + 21.6240i −1.11152 + 0.807565i
\(718\) −29.9429 21.7548i −1.11746 0.811881i
\(719\) −12.1452 −0.452939 −0.226469 0.974018i \(-0.572718\pi\)
−0.226469 + 0.974018i \(0.572718\pi\)
\(720\) −40.6231 29.5144i −1.51393 1.09994i
\(721\) −10.3204 −0.384351
\(722\) −3.27347 −0.121826
\(723\) 29.0431 + 89.3855i 1.08012 + 3.32428i
\(724\) 2.75684 + 2.00296i 0.102457 + 0.0744396i
\(725\) 0.978481 + 3.01145i 0.0363399 + 0.111843i
\(726\) −53.5240 + 10.8482i −1.98646 + 0.402615i
\(727\) −11.2806 8.19584i −0.418374 0.303967i 0.358609 0.933488i \(-0.383251\pi\)
−0.776983 + 0.629521i \(0.783251\pi\)
\(728\) −2.25027 6.92561i −0.0834004 0.256680i
\(729\) 14.4664 44.5230i 0.535793 1.64900i
\(730\) 8.80161 27.0886i 0.325762 1.00259i
\(731\) −1.34108 4.12741i −0.0496015 0.152658i
\(732\) −10.7547 7.81374i −0.397505 0.288804i
\(733\) 6.23962 + 4.53335i 0.230466 + 0.167443i 0.697025 0.717047i \(-0.254507\pi\)
−0.466559 + 0.884490i \(0.654507\pi\)
\(734\) 15.6044 + 48.0253i 0.575968 + 1.77265i
\(735\) 19.3740 + 14.0761i 0.714622 + 0.519203i
\(736\) −1.47935 4.55296i −0.0545294 0.167824i
\(737\) −1.33828 + 2.29284i −0.0492963 + 0.0844578i
\(738\) −37.4742 63.6267i −1.37944 2.34213i
\(739\) 37.3049 + 27.1036i 1.37228 + 0.997022i 0.997555 + 0.0698875i \(0.0222640\pi\)
0.374728 + 0.927135i \(0.377736\pi\)
\(740\) 5.19141 0.190840
\(741\) −9.47636 29.1652i −0.348123 1.07141i
\(742\) −4.65786 + 14.3354i −0.170996 + 0.526270i
\(743\) 0.623354 1.91849i 0.0228686 0.0703825i −0.938971 0.343997i \(-0.888219\pi\)
0.961840 + 0.273614i \(0.0882191\pi\)
\(744\) 34.5604 25.1096i 1.26705 0.920562i
\(745\) 9.21865 + 6.69774i 0.337745 + 0.245386i
\(746\) −9.75978 30.0375i −0.357331 1.09975i
\(747\) 79.5985 2.91236
\(748\) 6.71643 + 1.46089i 0.245577 + 0.0534154i
\(749\) −1.86313 1.35364i −0.0680772 0.0494609i
\(750\) 57.0243 2.08223
\(751\) −32.6850 −1.19269 −0.596347 0.802727i \(-0.703382\pi\)
−0.596347 + 0.802727i \(0.703382\pi\)
\(752\) 7.00640 + 21.5635i 0.255497 + 0.786339i
\(753\) −21.4968 + 66.1603i −0.783386 + 2.41101i
\(754\) −1.07090 3.29589i −0.0389999 0.120029i
\(755\) −7.48203 + 23.0273i −0.272299 + 0.838050i
\(756\) −6.95747 −0.253041
\(757\) 19.1950 13.9460i 0.697655 0.506876i −0.181513 0.983389i \(-0.558099\pi\)
0.879168 + 0.476513i \(0.158099\pi\)
\(758\) −13.1951 + 40.6104i −0.479269 + 1.47504i
\(759\) 24.9207 10.9543i 0.904564 0.397617i
\(760\) 5.26923 16.2170i 0.191135 0.588253i
\(761\) 3.87190 11.9165i 0.140356 0.431973i −0.856028 0.516929i \(-0.827075\pi\)
0.996385 + 0.0849564i \(0.0270751\pi\)
\(762\) −15.0322 + 10.9215i −0.544557 + 0.395644i
\(763\) −7.77351 −0.281420
\(764\) 1.27507 3.92425i 0.0461302 0.141974i
\(765\) −54.5645 + 39.6434i −1.97278 + 1.43331i
\(766\) −12.7314 + 9.24991i −0.460004 + 0.334213i
\(767\) −5.49419 16.9094i −0.198384 0.610562i
\(768\) −7.92416 24.3881i −0.285939 0.880029i
\(769\) 11.9833 + 8.70638i 0.432129 + 0.313960i 0.782500 0.622651i \(-0.213944\pi\)
−0.350371 + 0.936611i \(0.613944\pi\)
\(770\) −10.0897 2.19460i −0.363606 0.0790880i
\(771\) −17.5339 12.7391i −0.631466 0.458787i
\(772\) −0.121089 + 0.0879763i −0.00435809 + 0.00316634i
\(773\) 15.7015 0.564745 0.282372 0.959305i \(-0.408879\pi\)
0.282372 + 0.959305i \(0.408879\pi\)
\(774\) 6.60763 + 4.80072i 0.237506 + 0.172558i
\(775\) −4.59216 + 14.1332i −0.164955 + 0.507680i
\(776\) −19.2520 + 13.9874i −0.691107 + 0.502118i
\(777\) −38.5406 + 28.0014i −1.38264 + 1.00455i
\(778\) −3.03759 + 9.34875i −0.108903 + 0.335169i
\(779\) 19.5094 22.0489i 0.698997 0.789984i
\(780\) −3.29207 −0.117875
\(781\) 28.1464 12.3722i 1.00716 0.442714i
\(782\) −23.6868 −0.847037
\(783\) 16.2689 0.581405
\(784\) 7.12461 + 21.9273i 0.254450 + 0.783118i
\(785\) −14.8080 + 10.7586i −0.528521 + 0.383993i
\(786\) −18.1948 55.9980i −0.648989 1.99738i
\(787\) 4.62694 0.164933 0.0824663 0.996594i \(-0.473720\pi\)
0.0824663 + 0.996594i \(0.473720\pi\)
\(788\) −1.13326 3.48782i −0.0403707 0.124248i
\(789\) −16.0197 + 11.6390i −0.570316 + 0.414359i
\(790\) 9.81811 + 30.2170i 0.349313 + 1.07507i
\(791\) 10.3597 7.52676i 0.368349 0.267621i
\(792\) 58.1869 25.5771i 2.06758 0.908842i
\(793\) 24.8681 0.883093
\(794\) −13.3421 −0.473494
\(795\) −27.0877 19.6804i −0.960701 0.697990i
\(796\) −2.05199 + 6.31539i −0.0727310 + 0.223843i
\(797\) 18.3956 + 13.3652i 0.651607 + 0.473420i 0.863818 0.503804i \(-0.168066\pi\)
−0.212211 + 0.977224i \(0.568066\pi\)
\(798\) −9.84080 30.2869i −0.348361 1.07214i
\(799\) 30.4544 1.07740
\(800\) 4.39708 + 3.19467i 0.155460 + 0.112949i
\(801\) 72.1238 52.4010i 2.54837 1.85150i
\(802\) 2.14686 + 6.60735i 0.0758082 + 0.233314i
\(803\) 28.1750 + 31.5911i 0.994276 + 1.11482i
\(804\) −0.271621 + 0.835962i −0.00957932 + 0.0294821i
\(805\) 5.14689 0.181404
\(806\) 5.02590 15.4681i 0.177030 0.544841i
\(807\) −79.2485 + 57.5774i −2.78968 + 2.02682i
\(808\) 0.547816 1.68600i 0.0192721 0.0593134i
\(809\) −28.8846 −1.01553 −0.507765 0.861496i \(-0.669528\pi\)
−0.507765 + 0.861496i \(0.669528\pi\)
\(810\) 17.4146 53.5967i 0.611887 1.88319i
\(811\) −2.74531 + 8.44920i −0.0964010 + 0.296692i −0.987616 0.156889i \(-0.949854\pi\)
0.891215 + 0.453581i \(0.149854\pi\)
\(812\) −0.160857 0.495066i −0.00564497 0.0173734i
\(813\) 14.1921 43.6787i 0.497738 1.53188i
\(814\) −26.8884 + 46.0670i −0.942438 + 1.61465i
\(815\) 0.122915 0.0893032i 0.00430554 0.00312816i
\(816\) −90.7632 −3.17735
\(817\) −1.00628 + 3.09701i −0.0352052 + 0.108351i
\(818\) −26.0044 + 18.8933i −0.909222 + 0.660588i
\(819\) 17.4848 12.7035i 0.610970 0.443896i
\(820\) −1.60395 2.72331i −0.0560122 0.0951021i
\(821\) 15.4205 + 47.4595i 0.538180 + 1.65635i 0.736676 + 0.676246i \(0.236394\pi\)
−0.198496 + 0.980102i \(0.563606\pi\)
\(822\) 22.3620 0.779966
\(823\) −23.3723 16.9810i −0.814707 0.591920i 0.100484 0.994939i \(-0.467961\pi\)
−0.915192 + 0.403019i \(0.867961\pi\)
\(824\) 15.2083 11.0495i 0.529806 0.384927i
\(825\) −15.5794 + 26.6917i −0.542406 + 0.929287i
\(826\) −5.70549 17.5597i −0.198519 0.610980i
\(827\) −36.0042 + 26.1586i −1.25199 + 0.909624i −0.998336 0.0576710i \(-0.981633\pi\)
−0.253654 + 0.967295i \(0.581633\pi\)
\(828\) 5.21652 3.79002i 0.181287 0.131712i
\(829\) −4.75221 14.6258i −0.165051 0.507975i 0.833989 0.551781i \(-0.186052\pi\)
−0.999040 + 0.0438061i \(0.986052\pi\)
\(830\) 23.5538 0.817565
\(831\) 6.51377 0.225960
\(832\) 10.3507 + 7.52024i 0.358847 + 0.260718i
\(833\) 30.9682 1.07299
\(834\) 29.7121 + 21.5871i 1.02885 + 0.747501i
\(835\) 10.4232 7.57291i 0.360710 0.262071i
\(836\) −3.43287 3.84908i −0.118728 0.133123i
\(837\) 61.7705 + 44.8789i 2.13510 + 1.55124i
\(838\) −16.7530 + 51.5603i −0.578721 + 1.78112i
\(839\) 19.6546 + 14.2799i 0.678554 + 0.492998i 0.872878 0.487939i \(-0.162251\pi\)
−0.194324 + 0.980937i \(0.562251\pi\)
\(840\) 16.7977 0.579577
\(841\) −8.58535 26.4230i −0.296047 0.911138i
\(842\) −18.4822 56.8823i −0.636938 1.96029i
\(843\) 9.32998 6.77863i 0.321342 0.233468i
\(844\) 1.54277 1.12089i 0.0531043 0.0385825i
\(845\) −10.3670 + 7.53203i −0.356634 + 0.259110i
\(846\) −46.3686 + 33.6888i −1.59419 + 1.15824i
\(847\) 10.3757 11.3062i 0.356514 0.388487i
\(848\) −9.96123 30.6575i −0.342070 1.05278i
\(849\) 61.3206 2.10452
\(850\) 21.7562 15.8068i 0.746231 0.542168i
\(851\) 8.21610 25.2866i 0.281644 0.866812i
\(852\) 8.23539 5.98336i 0.282140 0.204987i
\(853\) 33.0930 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(854\) 25.8245 0.883697
\(855\) 50.6078 1.73075
\(856\) 4.19481 0.143376
\(857\) 25.0796 18.2214i 0.856704 0.622432i −0.0702822 0.997527i \(-0.522390\pi\)
0.926986 + 0.375095i \(0.122390\pi\)
\(858\) 17.0510 29.2128i 0.582110 0.997310i
\(859\) −10.7596 33.1146i −0.367112 1.12985i −0.948648 0.316334i \(-0.897548\pi\)
0.581536 0.813521i \(-0.302452\pi\)
\(860\) 0.282816 + 0.205478i 0.00964393 + 0.00700673i
\(861\) 26.5966 + 11.5663i 0.906408 + 0.394178i
\(862\) 0.177641 + 0.546724i 0.00605049 + 0.0186215i
\(863\) 29.7022 + 21.5799i 1.01107 + 0.734589i 0.964434 0.264323i \(-0.0851485\pi\)
0.0466405 + 0.998912i \(0.485148\pi\)
\(864\) 22.5920 16.4140i 0.768594 0.558416i
\(865\) 11.6611 + 8.47231i 0.396490 + 0.288067i
\(866\) 12.4772 + 38.4008i 0.423992 + 1.30491i
\(867\) −20.6166 + 63.4513i −0.700175 + 2.15492i
\(868\) 0.754925 2.32342i 0.0256238 0.0788620i
\(869\) −46.1399 10.0359i −1.56519 0.340444i
\(870\) 7.99403 0.271023
\(871\) −0.508119 1.56383i −0.0172170 0.0529883i
\(872\) 11.4552 8.32268i 0.387922 0.281842i
\(873\) −57.1385 41.5135i −1.93384 1.40502i
\(874\) 14.3790 + 10.4469i 0.486376 + 0.353373i
\(875\) −12.9632 + 9.41829i −0.438235 + 0.318396i
\(876\) 11.3383 + 8.23779i 0.383087 + 0.278329i
\(877\) −16.7656 12.1809i −0.566134 0.411320i 0.267565 0.963540i \(-0.413781\pi\)
−0.833699 + 0.552220i \(0.813781\pi\)
\(878\) −12.6069 38.8001i −0.425463 1.30944i
\(879\) −16.9517 52.1720i −0.571767 1.75972i
\(880\) 20.2153 8.88600i 0.681458 0.299547i
\(881\) −8.07084 + 24.8395i −0.271913 + 0.836863i 0.718106 + 0.695934i \(0.245009\pi\)
−0.990020 + 0.140930i \(0.954991\pi\)
\(882\) −47.1510 + 34.2572i −1.58766 + 1.15350i
\(883\) 13.9013 + 10.0999i 0.467817 + 0.339889i 0.796590 0.604520i \(-0.206635\pi\)
−0.328773 + 0.944409i \(0.606635\pi\)
\(884\) −3.44414 + 2.50231i −0.115839 + 0.0841619i
\(885\) 41.0129 1.37863
\(886\) −1.27154 3.91340i −0.0427182 0.131473i
\(887\) −17.9501 13.0415i −0.602705 0.437891i 0.244133 0.969742i \(-0.421497\pi\)
−0.846838 + 0.531851i \(0.821497\pi\)
\(888\) 26.8146 82.5269i 0.899839 2.76942i
\(889\) 1.61339 4.96550i 0.0541113 0.166537i
\(890\) 21.3420 15.5059i 0.715386 0.519758i
\(891\) 55.7464 + 62.5052i 1.86757 + 2.09400i
\(892\) −0.604266 0.439025i −0.0202323 0.0146996i
\(893\) −18.4872 13.4318i −0.618652 0.449477i
\(894\) −31.3602 + 22.7845i −1.04884 + 0.762028i
\(895\) 20.7142 0.692400
\(896\) 15.0234 + 10.9152i 0.501897 + 0.364650i
\(897\) −5.21014 + 16.0352i −0.173961 + 0.535398i
\(898\) 27.8954 + 20.2672i 0.930882 + 0.676326i
\(899\) −1.76527 + 5.43295i −0.0588751 + 0.181199i
\(900\) −2.26217 + 6.96224i −0.0754056 + 0.232075i
\(901\) −43.2980 −1.44247
\(902\) 32.4733 0.127817i 1.08124 0.00425583i
\(903\) −3.20791 −0.106752
\(904\) −7.20775 + 22.1832i −0.239726 + 0.737801i
\(905\) 4.54401 13.9850i 0.151048 0.464878i
\(906\) −66.6356 48.4136i −2.21382 1.60843i
\(907\) 11.9272 36.7081i 0.396036 1.21887i −0.532116 0.846671i \(-0.678603\pi\)
0.928152 0.372201i \(-0.121397\pi\)
\(908\) −1.52315 1.10663i −0.0505475 0.0367249i
\(909\) 5.26144 0.174511
\(910\) 5.17391 3.75906i 0.171513 0.124612i
\(911\) −24.3768 17.7107i −0.807638 0.586783i 0.105507 0.994419i \(-0.466353\pi\)
−0.913145 + 0.407635i \(0.866353\pi\)
\(912\) 55.0975 + 40.0307i 1.82446 + 1.32555i
\(913\) −17.6458 + 30.2320i −0.583992 + 1.00053i
\(914\) −9.21421 + 6.69452i −0.304779 + 0.221435i
\(915\) −17.7266 + 54.5568i −0.586022 + 1.80359i
\(916\) 2.42363 7.45917i 0.0800790 0.246458i
\(917\) 13.3849 + 9.72473i 0.442010 + 0.321139i
\(918\) −42.6969 131.408i −1.40921 4.33710i
\(919\) −6.77185 −0.223383 −0.111691 0.993743i \(-0.535627\pi\)
−0.111691 + 0.993743i \(0.535627\pi\)
\(920\) −7.58456 + 5.51050i −0.250055 + 0.181676i
\(921\) 75.9118 + 55.1532i 2.50138 + 1.81736i
\(922\) 17.5526 12.7527i 0.578065 0.419989i
\(923\) −5.88453 + 18.1107i −0.193692 + 0.596122i
\(924\) 2.56117 4.38797i 0.0842564 0.144354i
\(925\) 9.32792 + 28.7084i 0.306700 + 0.943926i
\(926\) −7.75545 23.8688i −0.254860 0.784378i
\(927\) 45.1371 + 32.7940i 1.48250 + 1.07710i
\(928\) 1.69028 + 1.22806i 0.0554863 + 0.0403131i
\(929\) 11.1247 8.08260i 0.364991 0.265181i −0.390140 0.920756i \(-0.627573\pi\)
0.755131 + 0.655574i \(0.227573\pi\)
\(930\) 30.3520 + 22.0521i 0.995283 + 0.723115i
\(931\) −18.7992 13.6584i −0.616118 0.447636i
\(932\) 3.19677 2.32259i 0.104714 0.0760789i
\(933\) −13.4860 41.5057i −0.441512 1.35884i
\(934\) 50.7151 1.65945
\(935\) −2.96067 29.5123i −0.0968243 0.965157i
\(936\) −12.1651 + 37.4402i −0.397627 + 1.22377i
\(937\) 2.35909 7.26052i 0.0770680 0.237191i −0.905099 0.425200i \(-0.860204\pi\)
0.982167 + 0.188010i \(0.0602036\pi\)
\(938\) −0.527661 1.62397i −0.0172287 0.0530246i
\(939\) −75.0491 54.5264i −2.44913 1.77940i
\(940\) −1.98464 + 1.44193i −0.0647319 + 0.0470305i
\(941\) −7.32440 5.32149i −0.238769 0.173475i 0.461966 0.886898i \(-0.347144\pi\)
−0.700734 + 0.713422i \(0.747144\pi\)
\(942\) −19.2412 59.2184i −0.626913 1.92944i
\(943\) −15.8033 + 3.50257i −0.514625 + 0.114059i
\(944\) 31.9444 + 23.2089i 1.03970 + 0.755387i
\(945\) 9.27760 + 28.5535i 0.301800 + 0.928846i
\(946\) −3.28816 + 1.44537i −0.106907 + 0.0469930i
\(947\) −13.0699 + 9.49586i −0.424715 + 0.308574i −0.779532 0.626362i \(-0.784543\pi\)
0.354817 + 0.934936i \(0.384543\pi\)
\(948\) −15.6336 −0.507754
\(949\) −26.2177 −0.851063
\(950\) −20.1785 −0.654678
\(951\) −64.7878 −2.10089
\(952\) 17.5737 12.7680i 0.569565 0.413814i
\(953\) −0.383488 + 1.18026i −0.0124224 + 0.0382322i −0.957076 0.289838i \(-0.906398\pi\)
0.944653 + 0.328071i \(0.106398\pi\)
\(954\) 65.9238 47.8965i 2.13436 1.55071i
\(955\) −17.8054 −0.576170
\(956\) −1.18421 3.64462i −0.0383001 0.117876i
\(957\) −5.98889 + 10.2606i −0.193593 + 0.331677i
\(958\) −6.60176 + 4.79646i −0.213293 + 0.154966i
\(959\) −5.08349 + 3.69337i −0.164154 + 0.119265i
\(960\) −23.8765 + 17.3473i −0.770610 + 0.559881i
\(961\) 3.38994 2.46294i 0.109353 0.0794496i
\(962\) −10.2090 31.4200i −0.329150 1.01302i
\(963\) 3.84722 + 11.8405i 0.123975 + 0.381556i
\(964\) −9.79014 −0.315319
\(965\) 0.522524 + 0.379636i 0.0168206 + 0.0122209i
\(966\) −5.41051 + 16.6519i −0.174080 + 0.535765i
\(967\) 6.29884 + 4.57637i 0.202557 + 0.147166i 0.684440 0.729069i \(-0.260047\pi\)
−0.481883 + 0.876236i \(0.660047\pi\)
\(968\) −3.18486 + 27.7698i −0.102365 + 0.892556i
\(969\) 74.0064 53.7688i 2.37743 1.72730i
\(970\) −16.9077 12.2842i −0.542875 0.394422i
\(971\) 55.1359 1.76939 0.884697 0.466167i \(-0.154365\pi\)
0.884697 + 0.466167i \(0.154365\pi\)
\(972\) 10.3294 + 7.50476i 0.331316 + 0.240715i
\(973\) −10.3197 −0.330836
\(974\) −29.2528 −0.937319
\(975\) −5.91519 18.2051i −0.189438 0.583029i
\(976\) −44.6803 + 32.4621i −1.43018 + 1.03909i
\(977\) 13.4730 9.78869i 0.431039 0.313168i −0.351026 0.936366i \(-0.614167\pi\)
0.782064 + 0.623198i \(0.214167\pi\)
\(978\) 0.159714 + 0.491548i 0.00510708 + 0.0157180i
\(979\) 3.91344 + 39.0096i 0.125074 + 1.24675i
\(980\) −2.01813 + 1.46625i −0.0644667 + 0.0468378i
\(981\) 33.9981 + 24.7011i 1.08548 + 0.788645i
\(982\) −6.27867 −0.200360
\(983\) 8.73436 + 26.8816i 0.278583 + 0.857389i 0.988249 + 0.152852i \(0.0488456\pi\)
−0.709666 + 0.704538i \(0.751154\pi\)
\(984\) −51.5766 + 11.4312i −1.64420 + 0.364414i
\(985\) −12.8029 + 9.30182i −0.407933 + 0.296381i
\(986\) 8.36329 6.07629i 0.266342 0.193508i
\(987\) 6.95638 21.4095i 0.221424 0.681473i
\(988\) 3.19438 0.101627
\(989\) 1.44844 1.05236i 0.0460578 0.0334630i
\(990\) 37.1545 + 41.6592i 1.18085 + 1.32402i
\(991\) −15.9462 + 49.0774i −0.506548 + 1.55899i 0.291604 + 0.956539i \(0.405811\pi\)
−0.798152 + 0.602456i \(0.794189\pi\)
\(992\) 3.03004 + 9.32551i 0.0962039 + 0.296085i
\(993\) 9.95644 30.6428i 0.315958 0.972418i
\(994\) −6.11084 + 18.8072i −0.193824 + 0.596529i
\(995\) 28.6547 0.908414
\(996\) −3.58143 + 11.0225i −0.113482 + 0.349261i
\(997\) −33.5917 + 24.4058i −1.06386 + 0.772939i −0.974799 0.223087i \(-0.928387\pi\)
−0.0890611 + 0.996026i \(0.528387\pi\)
\(998\) 7.31027 22.4987i 0.231403 0.712184i
\(999\) 155.093 4.90692
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 451.2.h.a.59.12 160
11.3 even 5 451.2.j.a.223.29 yes 160
41.16 even 5 451.2.j.a.180.29 yes 160
451.344 even 5 inner 451.2.h.a.344.12 yes 160
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
451.2.h.a.59.12 160 1.1 even 1 trivial
451.2.h.a.344.12 yes 160 451.344 even 5 inner
451.2.j.a.180.29 yes 160 41.16 even 5
451.2.j.a.223.29 yes 160 11.3 even 5