Defining parameters
Level: | \( N \) | \(=\) | \( 448 = 2^{6} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 448.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 56 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(448, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 140 | 32 | 108 |
Cusp forms | 116 | 32 | 84 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(448, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
448.3.h.a | $8$ | $12.207$ | 8.0.\(\cdots\).2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{3}+\beta _{3}q^{5}-\beta _{4}q^{7}+q^{9}-\beta _{2}q^{11}+\cdots\) |
448.3.h.b | $24$ | $12.207$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(448, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(448, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)