Properties

Label 440.3.br
Level $440$
Weight $3$
Character orbit 440.br
Rep. character $\chi_{440}(83,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $1120$
Newform subspaces $1$
Sturm bound $216$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 440.br (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 440 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(216\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(440, [\chi])\).

Total New Old
Modular forms 1184 1184 0
Cusp forms 1120 1120 0
Eisenstein series 64 64 0

Trace form

\( 1120 q - 10 q^{2} - 12 q^{3} - 20 q^{6} - 10 q^{8} - 32 q^{11} - 100 q^{12} + 12 q^{16} - 20 q^{17} - 10 q^{18} + 28 q^{20} + 10 q^{22} - 12 q^{25} + 28 q^{26} - 84 q^{27} - 10 q^{28} - 370 q^{30} + 20 q^{33}+ \cdots + 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(440, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
440.3.br.a 440.br 440.ar $1120$ $11.989$ None 440.3.br.a \(-10\) \(-12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{20}]$