Properties

Label 432.2.s.a.287.1
Level $432$
Weight $2$
Character 432.287
Analytic conductor $3.450$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 287.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 432.287
Dual form 432.2.s.a.143.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{5} +(-1.50000 + 0.866025i) q^{7} +O(q^{10})\) \(q+(-1.50000 - 0.866025i) q^{5} +(-1.50000 + 0.866025i) q^{7} +(-1.50000 - 2.59808i) q^{11} +(2.50000 - 4.33013i) q^{13} -6.92820i q^{17} -3.46410i q^{19} +(-4.50000 + 7.79423i) q^{23} +(-1.00000 - 1.73205i) q^{25} +(-1.50000 + 0.866025i) q^{29} +(-4.50000 - 2.59808i) q^{31} +3.00000 q^{35} +2.00000 q^{37} +(4.50000 + 2.59808i) q^{41} +(4.50000 - 2.59808i) q^{43} +(-1.50000 - 2.59808i) q^{47} +(-2.00000 + 3.46410i) q^{49} +5.19615i q^{55} +(1.50000 - 2.59808i) q^{59} +(0.500000 + 0.866025i) q^{61} +(-7.50000 + 4.33013i) q^{65} +(7.50000 + 4.33013i) q^{67} +12.0000 q^{71} -2.00000 q^{73} +(4.50000 + 2.59808i) q^{77} +(-7.50000 + 4.33013i) q^{79} +(-7.50000 - 12.9904i) q^{83} +(-6.00000 + 10.3923i) q^{85} +6.92820i q^{89} +8.66025i q^{91} +(-3.00000 + 5.19615i) q^{95} +(2.50000 + 4.33013i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} - 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{5} - 3 q^{7} - 3 q^{11} + 5 q^{13} - 9 q^{23} - 2 q^{25} - 3 q^{29} - 9 q^{31} + 6 q^{35} + 4 q^{37} + 9 q^{41} + 9 q^{43} - 3 q^{47} - 4 q^{49} + 3 q^{59} + q^{61} - 15 q^{65} + 15 q^{67} + 24 q^{71} - 4 q^{73} + 9 q^{77} - 15 q^{79} - 15 q^{83} - 12 q^{85} - 6 q^{95} + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.50000 0.866025i −0.670820 0.387298i 0.125567 0.992085i \(-0.459925\pi\)
−0.796387 + 0.604787i \(0.793258\pi\)
\(6\) 0 0
\(7\) −1.50000 + 0.866025i −0.566947 + 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 0 0
\(13\) 2.50000 4.33013i 0.693375 1.20096i −0.277350 0.960769i \(-0.589456\pi\)
0.970725 0.240192i \(-0.0772105\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.92820i 1.68034i −0.542326 0.840168i \(-0.682456\pi\)
0.542326 0.840168i \(-0.317544\pi\)
\(18\) 0 0
\(19\) 3.46410i 0.794719i −0.917663 0.397360i \(-0.869927\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.50000 + 7.79423i −0.938315 + 1.62521i −0.169701 + 0.985496i \(0.554280\pi\)
−0.768613 + 0.639713i \(0.779053\pi\)
\(24\) 0 0
\(25\) −1.00000 1.73205i −0.200000 0.346410i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.50000 + 0.866025i −0.278543 + 0.160817i −0.632764 0.774345i \(-0.718080\pi\)
0.354221 + 0.935162i \(0.384746\pi\)
\(30\) 0 0
\(31\) −4.50000 2.59808i −0.808224 0.466628i 0.0381148 0.999273i \(-0.487865\pi\)
−0.846339 + 0.532645i \(0.821198\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.50000 + 2.59808i 0.702782 + 0.405751i 0.808383 0.588657i \(-0.200343\pi\)
−0.105601 + 0.994409i \(0.533677\pi\)
\(42\) 0 0
\(43\) 4.50000 2.59808i 0.686244 0.396203i −0.115960 0.993254i \(-0.536994\pi\)
0.802203 + 0.597051i \(0.203661\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.50000 2.59808i −0.218797 0.378968i 0.735643 0.677369i \(-0.236880\pi\)
−0.954441 + 0.298401i \(0.903547\pi\)
\(48\) 0 0
\(49\) −2.00000 + 3.46410i −0.285714 + 0.494872i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 5.19615i 0.700649i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.50000 2.59808i 0.195283 0.338241i −0.751710 0.659494i \(-0.770771\pi\)
0.946993 + 0.321253i \(0.104104\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.50000 + 4.33013i −0.930261 + 0.537086i
\(66\) 0 0
\(67\) 7.50000 + 4.33013i 0.916271 + 0.529009i 0.882443 0.470418i \(-0.155897\pi\)
0.0338274 + 0.999428i \(0.489230\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.50000 + 2.59808i 0.512823 + 0.296078i
\(78\) 0 0
\(79\) −7.50000 + 4.33013i −0.843816 + 0.487177i −0.858559 0.512714i \(-0.828640\pi\)
0.0147436 + 0.999891i \(0.495307\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.50000 12.9904i −0.823232 1.42588i −0.903263 0.429087i \(-0.858835\pi\)
0.0800311 0.996792i \(-0.474498\pi\)
\(84\) 0 0
\(85\) −6.00000 + 10.3923i −0.650791 + 1.12720i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.92820i 0.734388i 0.930144 + 0.367194i \(0.119682\pi\)
−0.930144 + 0.367194i \(0.880318\pi\)
\(90\) 0 0
\(91\) 8.66025i 0.907841i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.00000 + 5.19615i −0.307794 + 0.533114i
\(96\) 0 0
\(97\) 2.50000 + 4.33013i 0.253837 + 0.439658i 0.964579 0.263795i \(-0.0849741\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.50000 2.59808i 0.447767 0.258518i −0.259120 0.965845i \(-0.583432\pi\)
0.706887 + 0.707327i \(0.250099\pi\)
\(102\) 0 0
\(103\) 1.50000 + 0.866025i 0.147799 + 0.0853320i 0.572076 0.820201i \(-0.306138\pi\)
−0.424277 + 0.905533i \(0.639472\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.5000 + 6.06218i 0.987757 + 0.570282i 0.904603 0.426255i \(-0.140167\pi\)
0.0831539 + 0.996537i \(0.473501\pi\)
\(114\) 0 0
\(115\) 13.5000 7.79423i 1.25888 0.726816i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.00000 + 10.3923i 0.550019 + 0.952661i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) 10.3923i 0.922168i −0.887357 0.461084i \(-0.847461\pi\)
0.887357 0.461084i \(-0.152539\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.50000 2.59808i 0.131056 0.226995i −0.793028 0.609185i \(-0.791497\pi\)
0.924084 + 0.382190i \(0.124830\pi\)
\(132\) 0 0
\(133\) 3.00000 + 5.19615i 0.260133 + 0.450564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.50000 + 4.33013i −0.640768 + 0.369948i −0.784910 0.619609i \(-0.787291\pi\)
0.144142 + 0.989557i \(0.453958\pi\)
\(138\) 0 0
\(139\) 1.50000 + 0.866025i 0.127228 + 0.0734553i 0.562263 0.826958i \(-0.309931\pi\)
−0.435035 + 0.900414i \(0.643264\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −15.0000 −1.25436
\(144\) 0 0
\(145\) 3.00000 0.249136
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.50000 4.33013i −0.614424 0.354738i 0.160271 0.987073i \(-0.448763\pi\)
−0.774695 + 0.632335i \(0.782097\pi\)
\(150\) 0 0
\(151\) −7.50000 + 4.33013i −0.610341 + 0.352381i −0.773099 0.634285i \(-0.781294\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.50000 + 7.79423i 0.361449 + 0.626048i
\(156\) 0 0
\(157\) 0.500000 0.866025i 0.0399043 0.0691164i −0.845383 0.534160i \(-0.820628\pi\)
0.885288 + 0.465044i \(0.153961\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.5885i 1.22854i
\(162\) 0 0
\(163\) 17.3205i 1.35665i −0.734763 0.678323i \(-0.762707\pi\)
0.734763 0.678323i \(-0.237293\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.50000 2.59808i 0.116073 0.201045i −0.802135 0.597143i \(-0.796303\pi\)
0.918208 + 0.396098i \(0.129636\pi\)
\(168\) 0 0
\(169\) −6.00000 10.3923i −0.461538 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.5000 9.52628i 1.25447 0.724270i 0.282477 0.959274i \(-0.408844\pi\)
0.971994 + 0.235004i \(0.0755104\pi\)
\(174\) 0 0
\(175\) 3.00000 + 1.73205i 0.226779 + 0.130931i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.00000 1.73205i −0.220564 0.127343i
\(186\) 0 0
\(187\) −18.0000 + 10.3923i −1.31629 + 0.759961i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.50000 2.59808i −0.108536 0.187990i 0.806641 0.591041i \(-0.201283\pi\)
−0.915177 + 0.403051i \(0.867950\pi\)
\(192\) 0 0
\(193\) 6.50000 11.2583i 0.467880 0.810392i −0.531446 0.847092i \(-0.678351\pi\)
0.999326 + 0.0366998i \(0.0116845\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.92820i 0.493614i −0.969065 0.246807i \(-0.920619\pi\)
0.969065 0.246807i \(-0.0793814\pi\)
\(198\) 0 0
\(199\) 24.2487i 1.71895i 0.511182 + 0.859473i \(0.329208\pi\)
−0.511182 + 0.859473i \(0.670792\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.50000 2.59808i 0.105279 0.182349i
\(204\) 0 0
\(205\) −4.50000 7.79423i −0.314294 0.544373i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.00000 + 5.19615i −0.622543 + 0.359425i
\(210\) 0 0
\(211\) −16.5000 9.52628i −1.13591 0.655816i −0.190493 0.981689i \(-0.561009\pi\)
−0.945414 + 0.325872i \(0.894342\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.00000 −0.613795
\(216\) 0 0
\(217\) 9.00000 0.610960
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −30.0000 17.3205i −2.01802 1.16510i
\(222\) 0 0
\(223\) 22.5000 12.9904i 1.50671 0.869900i 0.506742 0.862098i \(-0.330850\pi\)
0.999970 0.00780243i \(-0.00248362\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.50000 2.59808i −0.0995585 0.172440i 0.811943 0.583736i \(-0.198410\pi\)
−0.911502 + 0.411296i \(0.865076\pi\)
\(228\) 0 0
\(229\) 8.50000 14.7224i 0.561696 0.972886i −0.435653 0.900115i \(-0.643482\pi\)
0.997349 0.0727709i \(-0.0231842\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.8564i 0.907763i −0.891062 0.453882i \(-0.850039\pi\)
0.891062 0.453882i \(-0.149961\pi\)
\(234\) 0 0
\(235\) 5.19615i 0.338960i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.50000 12.9904i 0.485135 0.840278i −0.514719 0.857359i \(-0.672104\pi\)
0.999854 + 0.0170808i \(0.00543724\pi\)
\(240\) 0 0
\(241\) 8.50000 + 14.7224i 0.547533 + 0.948355i 0.998443 + 0.0557856i \(0.0177663\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.00000 3.46410i 0.383326 0.221313i
\(246\) 0 0
\(247\) −15.0000 8.66025i −0.954427 0.551039i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 27.0000 1.69748
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.50000 0.866025i −0.0935674 0.0540212i 0.452486 0.891771i \(-0.350537\pi\)
−0.546054 + 0.837750i \(0.683871\pi\)
\(258\) 0 0
\(259\) −3.00000 + 1.73205i −0.186411 + 0.107624i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.50000 + 7.79423i 0.277482 + 0.480613i 0.970758 0.240059i \(-0.0771668\pi\)
−0.693276 + 0.720672i \(0.743833\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 27.7128i 1.68968i 0.535019 + 0.844840i \(0.320304\pi\)
−0.535019 + 0.844840i \(0.679696\pi\)
\(270\) 0 0
\(271\) 24.2487i 1.47300i −0.676435 0.736502i \(-0.736476\pi\)
0.676435 0.736502i \(-0.263524\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.00000 + 5.19615i −0.180907 + 0.313340i
\(276\) 0 0
\(277\) −9.50000 16.4545i −0.570800 0.988654i −0.996484 0.0837823i \(-0.973300\pi\)
0.425684 0.904872i \(-0.360033\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.5000 9.52628i 0.984307 0.568290i 0.0807396 0.996735i \(-0.474272\pi\)
0.903568 + 0.428445i \(0.140938\pi\)
\(282\) 0 0
\(283\) 13.5000 + 7.79423i 0.802492 + 0.463319i 0.844342 0.535805i \(-0.179992\pi\)
−0.0418500 + 0.999124i \(0.513325\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.00000 −0.531253
\(288\) 0 0
\(289\) −31.0000 −1.82353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.50000 0.866025i −0.0876309 0.0505937i 0.455544 0.890213i \(-0.349445\pi\)
−0.543175 + 0.839619i \(0.682778\pi\)
\(294\) 0 0
\(295\) −4.50000 + 2.59808i −0.262000 + 0.151266i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.5000 + 38.9711i 1.30121 + 2.25376i
\(300\) 0 0
\(301\) −4.50000 + 7.79423i −0.259376 + 0.449252i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.73205i 0.0991769i
\(306\) 0 0
\(307\) 10.3923i 0.593120i 0.955014 + 0.296560i \(0.0958395\pi\)
−0.955014 + 0.296560i \(0.904160\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.50000 12.9904i 0.425286 0.736617i −0.571161 0.820838i \(-0.693507\pi\)
0.996447 + 0.0842210i \(0.0268402\pi\)
\(312\) 0 0
\(313\) 0.500000 + 0.866025i 0.0282617 + 0.0489506i 0.879810 0.475325i \(-0.157669\pi\)
−0.851549 + 0.524276i \(0.824336\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.5000 6.06218i 0.589739 0.340486i −0.175255 0.984523i \(-0.556075\pi\)
0.764994 + 0.644037i \(0.222742\pi\)
\(318\) 0 0
\(319\) 4.50000 + 2.59808i 0.251952 + 0.145464i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) −10.0000 −0.554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.50000 + 2.59808i 0.248093 + 0.143237i
\(330\) 0 0
\(331\) −1.50000 + 0.866025i −0.0824475 + 0.0476011i −0.540657 0.841243i \(-0.681824\pi\)
0.458209 + 0.888844i \(0.348491\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.50000 12.9904i −0.409769 0.709740i
\(336\) 0 0
\(337\) −3.50000 + 6.06218i −0.190657 + 0.330228i −0.945468 0.325714i \(-0.894395\pi\)
0.754811 + 0.655942i \(0.227729\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 15.5885i 0.844162i
\(342\) 0 0
\(343\) 19.0526i 1.02874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.50000 + 7.79423i −0.241573 + 0.418416i −0.961162 0.275983i \(-0.910997\pi\)
0.719590 + 0.694399i \(0.244330\pi\)
\(348\) 0 0
\(349\) 6.50000 + 11.2583i 0.347937 + 0.602645i 0.985883 0.167437i \(-0.0535490\pi\)
−0.637946 + 0.770081i \(0.720216\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.50000 2.59808i 0.239511 0.138282i −0.375441 0.926846i \(-0.622509\pi\)
0.614952 + 0.788565i \(0.289175\pi\)
\(354\) 0 0
\(355\) −18.0000 10.3923i −0.955341 0.551566i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 7.00000 0.368421
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.00000 + 1.73205i 0.157027 + 0.0906597i
\(366\) 0 0
\(367\) 16.5000 9.52628i 0.861293 0.497268i −0.00315207 0.999995i \(-0.501003\pi\)
0.864445 + 0.502727i \(0.167670\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.50000 + 9.52628i −0.284779 + 0.493252i −0.972556 0.232671i \(-0.925254\pi\)
0.687776 + 0.725923i \(0.258587\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.66025i 0.446026i
\(378\) 0 0
\(379\) 17.3205i 0.889695i 0.895606 + 0.444847i \(0.146742\pi\)
−0.895606 + 0.444847i \(0.853258\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.5000 23.3827i 0.689818 1.19480i −0.282079 0.959391i \(-0.591024\pi\)
0.971897 0.235408i \(-0.0756427\pi\)
\(384\) 0 0
\(385\) −4.50000 7.79423i −0.229341 0.397231i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −31.5000 + 18.1865i −1.59711 + 0.922094i −0.605074 + 0.796170i \(0.706856\pi\)
−0.992040 + 0.125924i \(0.959810\pi\)
\(390\) 0 0
\(391\) 54.0000 + 31.1769i 2.73090 + 1.57668i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.0000 0.754732
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.5000 + 9.52628i 0.823971 + 0.475720i 0.851784 0.523893i \(-0.175521\pi\)
−0.0278131 + 0.999613i \(0.508854\pi\)
\(402\) 0 0
\(403\) −22.5000 + 12.9904i −1.12080 + 0.647097i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.00000 5.19615i −0.148704 0.257564i
\(408\) 0 0
\(409\) −15.5000 + 26.8468i −0.766426 + 1.32749i 0.173064 + 0.984911i \(0.444633\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.19615i 0.255686i
\(414\) 0 0
\(415\) 25.9808i 1.27535i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.50000 12.9904i 0.366399 0.634622i −0.622601 0.782540i \(-0.713924\pi\)
0.989000 + 0.147918i \(0.0472572\pi\)
\(420\) 0 0
\(421\) 8.50000 + 14.7224i 0.414265 + 0.717527i 0.995351 0.0963145i \(-0.0307055\pi\)
−0.581086 + 0.813842i \(0.697372\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.0000 + 6.92820i −0.582086 + 0.336067i
\(426\) 0 0
\(427\) −1.50000 0.866025i −0.0725901 0.0419099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 27.0000 + 15.5885i 1.29159 + 0.745697i
\(438\) 0 0
\(439\) 4.50000 2.59808i 0.214773 0.123999i −0.388755 0.921341i \(-0.627095\pi\)
0.603528 + 0.797342i \(0.293761\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.50000 + 7.79423i 0.213801 + 0.370315i 0.952901 0.303281i \(-0.0980821\pi\)
−0.739100 + 0.673596i \(0.764749\pi\)
\(444\) 0 0
\(445\) 6.00000 10.3923i 0.284427 0.492642i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.7846i 0.980886i 0.871473 + 0.490443i \(0.163165\pi\)
−0.871473 + 0.490443i \(0.836835\pi\)
\(450\) 0 0
\(451\) 15.5885i 0.734032i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.50000 12.9904i 0.351605 0.608998i
\(456\) 0 0
\(457\) 14.5000 + 25.1147i 0.678281 + 1.17482i 0.975498 + 0.220008i \(0.0706083\pi\)
−0.297217 + 0.954810i \(0.596058\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.5000 12.9904i 1.04793 0.605022i 0.125860 0.992048i \(-0.459831\pi\)
0.922069 + 0.387026i \(0.126497\pi\)
\(462\) 0 0
\(463\) −16.5000 9.52628i −0.766820 0.442724i 0.0649190 0.997891i \(-0.479321\pi\)
−0.831739 + 0.555167i \(0.812654\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) −15.0000 −0.692636
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −13.5000 7.79423i −0.620731 0.358379i
\(474\) 0 0
\(475\) −6.00000 + 3.46410i −0.275299 + 0.158944i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.50000 12.9904i −0.342684 0.593546i 0.642246 0.766498i \(-0.278003\pi\)
−0.984930 + 0.172953i \(0.944669\pi\)
\(480\) 0 0
\(481\) 5.00000 8.66025i 0.227980 0.394874i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.66025i 0.393242i
\(486\) 0 0
\(487\) 3.46410i 0.156973i 0.996915 + 0.0784867i \(0.0250088\pi\)
−0.996915 + 0.0784867i \(0.974991\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −10.5000 + 18.1865i −0.473858 + 0.820747i −0.999552 0.0299272i \(-0.990472\pi\)
0.525694 + 0.850674i \(0.323806\pi\)
\(492\) 0 0
\(493\) 6.00000 + 10.3923i 0.270226 + 0.468046i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −18.0000 + 10.3923i −0.807410 + 0.466159i
\(498\) 0 0
\(499\) 13.5000 + 7.79423i 0.604343 + 0.348918i 0.770748 0.637140i \(-0.219883\pi\)
−0.166405 + 0.986057i \(0.553216\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) −9.00000 −0.400495
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −31.5000 18.1865i −1.39621 0.806104i −0.402219 0.915543i \(-0.631761\pi\)
−0.993993 + 0.109439i \(0.965094\pi\)
\(510\) 0 0
\(511\) 3.00000 1.73205i 0.132712 0.0766214i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.50000 2.59808i −0.0660979 0.114485i
\(516\) 0 0
\(517\) −4.50000 + 7.79423i −0.197910 + 0.342790i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 17.3205i 0.757373i 0.925525 + 0.378686i \(0.123624\pi\)
−0.925525 + 0.378686i \(0.876376\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18.0000 + 31.1769i −0.784092 + 1.35809i
\(528\) 0 0
\(529\) −29.0000 50.2295i −1.26087 2.18389i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 22.5000 12.9904i 0.974583 0.562676i
\(534\) 0 0
\(535\) −18.0000 10.3923i −0.778208 0.449299i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 21.0000 + 12.1244i 0.899541 + 0.519350i
\(546\) 0 0
\(547\) 34.5000 19.9186i 1.47511 0.851657i 0.475507 0.879712i \(-0.342265\pi\)
0.999606 + 0.0280547i \(0.00893127\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.00000 + 5.19615i 0.127804 + 0.221364i
\(552\) 0 0
\(553\) 7.50000 12.9904i 0.318932 0.552407i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.7128i 1.17423i −0.809504 0.587115i \(-0.800264\pi\)
0.809504 0.587115i \(-0.199736\pi\)
\(558\) 0 0
\(559\) 25.9808i 1.09887i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.50000 + 7.79423i −0.189652 + 0.328488i −0.945134 0.326682i \(-0.894069\pi\)
0.755482 + 0.655169i \(0.227403\pi\)
\(564\) 0 0
\(565\) −10.5000 18.1865i −0.441738 0.765113i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.50000 + 0.866025i −0.0628833 + 0.0363057i −0.531112 0.847302i \(-0.678226\pi\)
0.468229 + 0.883607i \(0.344892\pi\)
\(570\) 0 0
\(571\) −28.5000 16.4545i −1.19269 0.688599i −0.233773 0.972291i \(-0.575107\pi\)
−0.958915 + 0.283693i \(0.908440\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.0000 0.750652
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 22.5000 + 12.9904i 0.933457 + 0.538932i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.5000 33.7750i −0.804851 1.39404i −0.916392 0.400283i \(-0.868912\pi\)
0.111540 0.993760i \(-0.464422\pi\)
\(588\) 0 0
\(589\) −9.00000 + 15.5885i −0.370839 + 0.642311i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 34.6410i 1.42254i −0.702921 0.711268i \(-0.748121\pi\)
0.702921 0.711268i \(-0.251879\pi\)
\(594\) 0 0
\(595\) 20.7846i 0.852086i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −22.5000 + 38.9711i −0.919325 + 1.59232i −0.118882 + 0.992908i \(0.537931\pi\)
−0.800443 + 0.599409i \(0.795402\pi\)
\(600\) 0 0
\(601\) −5.50000 9.52628i −0.224350 0.388585i 0.731774 0.681547i \(-0.238692\pi\)
−0.956124 + 0.292962i \(0.905359\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.00000 + 1.73205i −0.121967 + 0.0704179i
\(606\) 0 0
\(607\) 1.50000 + 0.866025i 0.0608831 + 0.0351509i 0.530133 0.847915i \(-0.322142\pi\)
−0.469249 + 0.883066i \(0.655475\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15.0000 −0.606835
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −19.5000 11.2583i −0.785040 0.453243i 0.0531732 0.998585i \(-0.483066\pi\)
−0.838214 + 0.545342i \(0.816400\pi\)
\(618\) 0 0
\(619\) −25.5000 + 14.7224i −1.02493 + 0.591744i −0.915529 0.402253i \(-0.868227\pi\)
−0.109403 + 0.993997i \(0.534894\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.00000 10.3923i −0.240385 0.416359i
\(624\) 0 0
\(625\) 5.50000 9.52628i 0.220000 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.8564i 0.552491i
\(630\) 0 0
\(631\) 17.3205i 0.689519i 0.938691 + 0.344759i \(0.112039\pi\)
−0.938691 + 0.344759i \(0.887961\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.00000 + 15.5885i −0.357154 + 0.618609i
\(636\) 0 0
\(637\) 10.0000 + 17.3205i 0.396214 + 0.686264i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −25.5000 + 14.7224i −1.00719 + 0.581501i −0.910368 0.413801i \(-0.864201\pi\)
−0.0968219 + 0.995302i \(0.530868\pi\)
\(642\) 0 0
\(643\) −4.50000 2.59808i −0.177463 0.102458i 0.408637 0.912697i \(-0.366004\pi\)
−0.586100 + 0.810239i \(0.699337\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13.5000 7.79423i −0.528296 0.305012i 0.212026 0.977264i \(-0.431994\pi\)
−0.740322 + 0.672252i \(0.765327\pi\)
\(654\) 0 0
\(655\) −4.50000 + 2.59808i −0.175830 + 0.101515i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.50000 2.59808i −0.0584317 0.101207i 0.835330 0.549749i \(-0.185277\pi\)
−0.893762 + 0.448542i \(0.851943\pi\)
\(660\) 0 0
\(661\) 24.5000 42.4352i 0.952940 1.65054i 0.213925 0.976850i \(-0.431375\pi\)
0.739014 0.673690i \(-0.235292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10.3923i 0.402996i
\(666\) 0 0
\(667\) 15.5885i 0.603587i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.50000 2.59808i 0.0579069 0.100298i
\(672\) 0 0
\(673\) 18.5000 + 32.0429i 0.713123 + 1.23516i 0.963679 + 0.267063i \(0.0860531\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −31.5000 + 18.1865i −1.21064 + 0.698965i −0.962899 0.269860i \(-0.913022\pi\)
−0.247744 + 0.968826i \(0.579689\pi\)
\(678\) 0 0
\(679\) −7.50000 4.33013i −0.287824 0.166175i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 15.0000 0.573121
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 4.50000 2.59808i 0.171188 0.0988355i −0.411958 0.911203i \(-0.635155\pi\)
0.583146 + 0.812367i \(0.301822\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.50000 2.59808i −0.0568982 0.0985506i
\(696\) 0 0
\(697\) 18.0000 31.1769i 0.681799 1.18091i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.8564i 0.523349i −0.965156 0.261675i \(-0.915725\pi\)
0.965156 0.261675i \(-0.0842747\pi\)
\(702\) 0 0
\(703\) 6.92820i 0.261302i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.50000 + 7.79423i −0.169240 + 0.293132i
\(708\) 0 0
\(709\) −9.50000 16.4545i −0.356780 0.617961i 0.630641 0.776075i \(-0.282792\pi\)
−0.987421 + 0.158114i \(0.949459\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 40.5000 23.3827i 1.51674 0.875688i
\(714\) 0 0
\(715\) 22.5000 + 12.9904i 0.841452 + 0.485813i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) −3.00000 −0.111726
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.00000 + 1.73205i 0.111417 + 0.0643268i
\(726\) 0 0
\(727\) −31.5000 + 18.1865i −1.16827 + 0.674501i −0.953272 0.302113i \(-0.902308\pi\)
−0.214998 + 0.976614i \(0.568975\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18.0000 31.1769i −0.665754 1.15312i
\(732\) 0 0
\(733\) 2.50000 4.33013i 0.0923396 0.159937i −0.816156 0.577832i \(-0.803899\pi\)
0.908495 + 0.417895i \(0.137232\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.9808i 0.957014i
\(738\) 0 0
\(739\) 31.1769i 1.14686i 0.819254 + 0.573431i \(0.194388\pi\)
−0.819254 + 0.573431i \(0.805612\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.5000 23.3827i 0.495267 0.857828i −0.504718 0.863284i \(-0.668404\pi\)
0.999985 + 0.00545664i \(0.00173691\pi\)
\(744\) 0 0
\(745\) 7.50000 + 12.9904i 0.274779 + 0.475931i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18.0000 + 10.3923i −0.657706 + 0.379727i
\(750\) 0 0
\(751\) −10.5000 6.06218i −0.383150 0.221212i 0.296038 0.955176i \(-0.404335\pi\)
−0.679188 + 0.733964i \(0.737668\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.0000 0.545906
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19.5000 11.2583i −0.706874 0.408114i 0.103028 0.994678i \(-0.467147\pi\)
−0.809903 + 0.586564i \(0.800480\pi\)
\(762\) 0 0
\(763\) 21.0000 12.1244i 0.760251 0.438931i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.50000 12.9904i −0.270809 0.469055i
\(768\) 0 0
\(769\) −11.5000 + 19.9186i −0.414701 + 0.718283i −0.995397 0.0958377i \(-0.969447\pi\)
0.580696 + 0.814120i \(0.302780\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 27.7128i 0.996761i −0.866959 0.498380i \(-0.833928\pi\)
0.866959 0.498380i \(-0.166072\pi\)
\(774\) 0 0
\(775\) 10.3923i 0.373303i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.00000 15.5885i 0.322458 0.558514i
\(780\) 0 0
\(781\) −18.0000 31.1769i −0.644091 1.11560i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.50000 + 0.866025i −0.0535373 + 0.0309098i
\(786\) 0 0
\(787\) 25.5000 + 14.7224i 0.908977 + 0.524798i 0.880102 0.474785i \(-0.157474\pi\)
0.0288750 + 0.999583i \(0.490808\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −21.0000 −0.746674
\(792\) 0 0
\(793\) 5.00000 0.177555
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.5000 + 16.4545i 1.00952 + 0.582848i 0.911052 0.412292i \(-0.135272\pi\)
0.0984702 + 0.995140i \(0.468605\pi\)
\(798\) 0 0
\(799\) −18.0000 + 10.3923i −0.636794 + 0.367653i
\(800\) 0 0