Properties

Label 429.2.be
Level $429$
Weight $2$
Character orbit 429.be
Rep. character $\chi_{429}(89,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $184$
Newform subspaces $1$
Sturm bound $112$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 429 = 3 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 429.be (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(429, [\chi])\).

Total New Old
Modular forms 240 184 56
Cusp forms 208 184 24
Eisenstein series 32 0 32

Trace form

\( 184 q - 12 q^{6} + 12 q^{7} - 48 q^{10} - 16 q^{13} + 16 q^{15} + 80 q^{16} - 8 q^{18} - 4 q^{19} - 24 q^{24} - 48 q^{27} - 40 q^{28} + 48 q^{30} - 20 q^{31} + 16 q^{34} - 36 q^{36} + 44 q^{37} + 48 q^{39}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(429, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
429.2.be.a 429.be 39.k $184$ $3.426$ None 429.2.be.a \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(429, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(429, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)