Defining parameters
| Level: | \( N \) | \(=\) | \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4275.fe (of order \(36\) and degree \(12\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 855 \) |
| Character field: | \(\Q(\zeta_{36})\) | ||
| Sturm bound: | \(1200\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4275, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 7344 | 4368 | 2976 |
| Cusp forms | 7056 | 4272 | 2784 |
| Eisenstein series | 288 | 96 | 192 |
Decomposition of \(S_{2}^{\mathrm{new}}(4275, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4275, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4275, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(855, [\chi])\)\(^{\oplus 2}\)