Properties

Label 42432.2.a.e
Level 4243242432
Weight 22
Character orbit 42432.a
Self dual yes
Analytic conductor 338.821338.821
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [42432,2,Mod(1,42432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("42432.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 42432=2631317 42432 = 2^{6} \cdot 3 \cdot 13 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 42432.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-1,0,-2,0,4,0,1,0,0,0,-1,0,2,0,1,0,4,0,-4,0,0,0,-1,0,-1, 0,-6,0,-4,0,0,0,-8,0,6,0,1,0,-2,0,-4,0,-2,0,0,0,9,0,-1,0,10,0,0,0,-4,0, -4,0,-14,0,4,0,2,0,-12,0,0,0,12,0,14,0,1,0,0,0,0,0,1,0,12,0,-2,0,6,0,2, 0,-4,0,4,0,-8,0,14,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 338.821225857338.821225857
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == qq32q5+4q7+q9q13+2q15+q17+4q194q21q25q276q294q318q35+6q37+q392q414q432q45+9q49++14q97+O(q100) q - q^{3} - 2 q^{5} + 4 q^{7} + q^{9} - q^{13} + 2 q^{15} + q^{17} + 4 q^{19} - 4 q^{21} - q^{25} - q^{27} - 6 q^{29} - 4 q^{31} - 8 q^{35} + 6 q^{37} + q^{39} - 2 q^{41} - 4 q^{43} - 2 q^{45} + 9 q^{49}+ \cdots + 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1313 +1 +1
1717 1 -1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.