Defining parameters
| Level: | \( N \) | \(=\) | \( 42320 = 2^{4} \cdot 5 \cdot 23^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 42320.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 154 \) | ||
| Sturm bound: | \(13248\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(42320))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6768 | 1010 | 5758 |
| Cusp forms | 6481 | 1010 | 5471 |
| Eisenstein series | 287 | 0 | 287 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(828\) | \(121\) | \(707\) | \(793\) | \(121\) | \(672\) | \(35\) | \(0\) | \(35\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(862\) | \(132\) | \(730\) | \(826\) | \(132\) | \(694\) | \(36\) | \(0\) | \(36\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(852\) | \(131\) | \(721\) | \(816\) | \(131\) | \(685\) | \(36\) | \(0\) | \(36\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(842\) | \(121\) | \(721\) | \(806\) | \(121\) | \(685\) | \(36\) | \(0\) | \(36\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(864\) | \(131\) | \(733\) | \(828\) | \(131\) | \(697\) | \(36\) | \(0\) | \(36\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(830\) | \(121\) | \(709\) | \(794\) | \(121\) | \(673\) | \(36\) | \(0\) | \(36\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(840\) | \(121\) | \(719\) | \(804\) | \(121\) | \(683\) | \(36\) | \(0\) | \(36\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(850\) | \(132\) | \(718\) | \(814\) | \(132\) | \(682\) | \(36\) | \(0\) | \(36\) | |||
| Plus space | \(+\) | \(3340\) | \(484\) | \(2856\) | \(3197\) | \(484\) | \(2713\) | \(143\) | \(0\) | \(143\) | |||||
| Minus space | \(-\) | \(3428\) | \(526\) | \(2902\) | \(3284\) | \(526\) | \(2758\) | \(144\) | \(0\) | \(144\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(42320))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 23 | |||||||
| 42320.2.a.a | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-3\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | \(q-3q^{3}+q^{5}+2q^{7}+6q^{9}-3q^{13}+\cdots\) | |
| 42320.2.a.b | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(-2\) | $-$ | $+$ | $-$ | \(q-2q^{3}-q^{5}-2q^{7}+q^{9}-q^{11}-2q^{13}+\cdots\) | |
| 42320.2.a.c | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(2\) | $+$ | $+$ | $-$ | \(q-2q^{3}-q^{5}+2q^{7}+q^{9}-5q^{11}+\cdots\) | |
| 42320.2.a.d | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(3\) | $-$ | $+$ | $-$ | \(q-2q^{3}-q^{5}+3q^{7}+q^{9}-2q^{11}+\cdots\) | |
| 42320.2.a.e | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(-3\) | $-$ | $-$ | $-$ | \(q-2q^{3}+q^{5}-3q^{7}+q^{9}+2q^{11}+\cdots\) | |
| 42320.2.a.f | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(-2\) | $+$ | $-$ | $-$ | \(q-2q^{3}+q^{5}-2q^{7}+q^{9}+5q^{11}+\cdots\) | |
| 42320.2.a.g | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | \(q-2q^{3}+q^{5}+2q^{7}+q^{9}+q^{11}-2q^{13}+\cdots\) | |
| 42320.2.a.h | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(4\) | $-$ | $+$ | $-$ | \(q-q^{3}-q^{5}+4q^{7}-2q^{9}-4q^{13}+\cdots\) | |
| 42320.2.a.i | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-4\) | $-$ | $-$ | $-$ | \(q-q^{3}+q^{5}-4q^{7}-2q^{9}-6q^{11}+\cdots\) | |
| 42320.2.a.j | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-4\) | $-$ | $-$ | $-$ | \(q-q^{3}+q^{5}-4q^{7}-2q^{9}-4q^{13}+\cdots\) | |
| 42320.2.a.k | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-2\) | $+$ | $-$ | $-$ | \(q-q^{3}+q^{5}-2q^{7}-2q^{9}+q^{13}-q^{15}+\cdots\) | |
| 42320.2.a.l | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-4\) | $+$ | $+$ | $-$ | \(q-q^{5}-4q^{7}-3q^{9}+4q^{11}-2q^{13}+\cdots\) | |
| 42320.2.a.m | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-2\) | $-$ | $+$ | $-$ | \(q-q^{5}-2q^{7}-3q^{9}-3q^{11}-6q^{13}+\cdots\) | |
| 42320.2.a.n | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(1\) | $+$ | $+$ | $-$ | \(q-q^{5}+q^{7}-3q^{9}-6q^{11}-2q^{13}+\cdots\) | |
| 42320.2.a.o | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(2\) | $+$ | $+$ | $-$ | \(q-q^{5}+2q^{7}-3q^{9}-3q^{11}-2q^{13}+\cdots\) | |
| 42320.2.a.p | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(-2\) | $+$ | $-$ | $-$ | \(q+q^{5}-2q^{7}-3q^{9}+3q^{11}-2q^{13}+\cdots\) | |
| 42320.2.a.q | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | \(q+q^{5}-q^{7}-3q^{9}+6q^{11}+6q^{13}+\cdots\) | |
| 42320.2.a.r | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | \(q+q^{5}+q^{7}-3q^{9}+2q^{11}-2q^{13}+\cdots\) | |
| 42320.2.a.s | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | \(q+q^{5}+2q^{7}-3q^{9}+3q^{11}-6q^{13}+\cdots\) | |
| 42320.2.a.t | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-2\) | $-$ | $+$ | $-$ | \(q+q^{3}-q^{5}-2q^{7}-2q^{9}-4q^{11}+\cdots\) | |
| 42320.2.a.u | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-2\) | $-$ | $+$ | $-$ | \(q+q^{3}-q^{5}-2q^{7}-2q^{9}-4q^{11}+\cdots\) | |
| 42320.2.a.v | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(0\) | $+$ | $+$ | $-$ | \(q+q^{3}-q^{5}-2q^{9}+2q^{11}-5q^{13}+\cdots\) | |
| 42320.2.a.w | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(0\) | $-$ | $+$ | $-$ | \(q+q^{3}-q^{5}-2q^{9}+4q^{11}+q^{13}+\cdots\) | |
| 42320.2.a.x | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | \(q+q^{3}+q^{5}-2q^{9}-4q^{11}+q^{13}+\cdots\) | |
| 42320.2.a.y | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | \(q+q^{3}+q^{5}+2q^{7}-2q^{9}+4q^{11}+\cdots\) | |
| 42320.2.a.z | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(2\) | \(-1\) | \(-3\) | $-$ | $+$ | $-$ | \(q+2q^{3}-q^{5}-3q^{7}+q^{9}-6q^{11}+\cdots\) | |
| 42320.2.a.ba | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | \(q+2q^{3}+q^{5}+2q^{7}+q^{9}+2q^{13}+\cdots\) | |
| 42320.2.a.bb | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(3\) | $-$ | $-$ | $-$ | \(q+2q^{3}+q^{5}+3q^{7}+q^{9}+6q^{11}+\cdots\) | |
| 42320.2.a.bc | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(3\) | \(-1\) | \(-2\) | $-$ | $+$ | $-$ | \(q+3q^{3}-q^{5}-2q^{7}+6q^{9}-2q^{11}+\cdots\) | |
| 42320.2.a.bd | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(3\) | \(-1\) | \(-2\) | $+$ | $+$ | $-$ | \(q+3q^{3}-q^{5}-2q^{7}+6q^{9}+q^{13}+\cdots\) | |
| 42320.2.a.be | $1$ | $337.927$ | \(\Q\) | None | \(0\) | \(3\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | \(q+3q^{3}+q^{5}+2q^{7}+6q^{9}+2q^{11}+\cdots\) | |
| 42320.2.a.bf | $2$ | $337.927$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-3\) | \(-2\) | \(3\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.bg | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(-2\) | \(-8\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.bh | $2$ | $337.927$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(-2\) | \(-4\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.bi | $2$ | $337.927$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-2\) | \(-2\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.bj | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(-2\) | \(4\) | $+$ | $+$ | $+$ | ||
| 42320.2.a.bk | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(2\) | \(-4\) | $+$ | $-$ | $+$ | ||
| 42320.2.a.bl | $2$ | $337.927$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-2\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.bm | $2$ | $337.927$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(2\) | \(4\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.bn | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(2\) | \(8\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.bo | $2$ | $337.927$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.bp | $2$ | $337.927$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.bq | $2$ | $337.927$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.br | $2$ | $337.927$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-1\) | \(-2\) | \(2\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.bs | $2$ | $337.927$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-1\) | \(2\) | \(-1\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.bt | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(-2\) | \(-2\) | $+$ | $+$ | $+$ | ||
| 42320.2.a.bu | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(-2\) | \(-2\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.bv | $2$ | $337.927$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(-2\) | \(2\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.bw | $2$ | $337.927$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(-2\) | \(2\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.bx | $2$ | $337.927$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(2\) | \(-2\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.by | $2$ | $337.927$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(2\) | \(-2\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.bz | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(2\) | \(2\) | $+$ | $-$ | $+$ | ||
| 42320.2.a.ca | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(2\) | \(2\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.cb | $2$ | $337.927$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(1\) | \(2\) | \(-1\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.cc | $2$ | $337.927$ | \(\Q(\sqrt{21}) \) | None | \(0\) | \(1\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.cd | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(-2\) | \(-4\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.ce | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(-2\) | \(0\) | $+$ | $+$ | $+$ | ||
| 42320.2.a.cf | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(-2\) | \(4\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.cg | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(-2\) | \(4\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.ch | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(2\) | \(-4\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.ci | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(2\) | \(-4\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.cj | $2$ | $337.927$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(2\) | \(-2\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.ck | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(2\) | \(0\) | $+$ | $-$ | $+$ | ||
| 42320.2.a.cl | $2$ | $337.927$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(2\) | \(4\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.cm | $3$ | $337.927$ | 3.3.229.1 | None | \(0\) | \(-2\) | \(-3\) | \(7\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.cn | $3$ | $337.927$ | 3.3.2597.1 | None | \(0\) | \(-1\) | \(-3\) | \(2\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.co | $3$ | $337.927$ | 3.3.761.1 | None | \(0\) | \(-1\) | \(-3\) | \(3\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.cp | $3$ | $337.927$ | 3.3.961.1 | None | \(0\) | \(-1\) | \(-3\) | \(5\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.cq | $3$ | $337.927$ | 3.3.961.1 | None | \(0\) | \(-1\) | \(3\) | \(-5\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.cr | $3$ | $337.927$ | 3.3.761.1 | None | \(0\) | \(-1\) | \(3\) | \(-3\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.cs | $3$ | $337.927$ | 3.3.1101.1 | None | \(0\) | \(-1\) | \(3\) | \(3\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.ct | $3$ | $337.927$ | 3.3.229.1 | None | \(0\) | \(0\) | \(-3\) | \(-1\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.cu | $3$ | $337.927$ | 3.3.229.1 | None | \(0\) | \(0\) | \(3\) | \(1\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.cv | $3$ | $337.927$ | 3.3.621.1 | None | \(0\) | \(0\) | \(3\) | \(3\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.cw | $3$ | $337.927$ | 3.3.785.1 | None | \(0\) | \(1\) | \(-3\) | \(3\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.cx | $3$ | $337.927$ | 3.3.1509.1 | None | \(0\) | \(1\) | \(-3\) | \(3\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.cy | $3$ | $337.927$ | 3.3.1257.1 | None | \(0\) | \(1\) | \(-3\) | \(3\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.cz | $3$ | $337.927$ | 3.3.785.1 | None | \(0\) | \(1\) | \(3\) | \(-3\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.da | $3$ | $337.927$ | 3.3.1509.1 | None | \(0\) | \(1\) | \(3\) | \(-3\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.db | $3$ | $337.927$ | 3.3.1257.1 | None | \(0\) | \(1\) | \(3\) | \(-3\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.dc | $4$ | $337.927$ | \(\Q(\zeta_{24})^+\) | None | \(0\) | \(-4\) | \(-4\) | \(-4\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.dd | $4$ | $337.927$ | \(\Q(\zeta_{24})^+\) | None | \(0\) | \(-4\) | \(4\) | \(4\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.de | $4$ | $337.927$ | 4.4.59457.1 | None | \(0\) | \(-2\) | \(-4\) | \(-1\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.df | $4$ | $337.927$ | 4.4.4752.1 | None | \(0\) | \(-2\) | \(-4\) | \(6\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.dg | $4$ | $337.927$ | 4.4.4752.1 | None | \(0\) | \(-2\) | \(4\) | \(-6\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.dh | $4$ | $337.927$ | 4.4.59457.1 | None | \(0\) | \(-2\) | \(4\) | \(1\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.di | $4$ | $337.927$ | 4.4.2777.1 | None | \(0\) | \(-1\) | \(-4\) | \(-3\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.dj | $4$ | $337.927$ | 4.4.2777.1 | None | \(0\) | \(-1\) | \(4\) | \(3\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.dk | $4$ | $337.927$ | \(\Q(\zeta_{24})^+\) | None | \(0\) | \(0\) | \(-4\) | \(-4\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.dl | $4$ | $337.927$ | \(\Q(\zeta_{24})^+\) | None | \(0\) | \(0\) | \(4\) | \(4\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.dm | $4$ | $337.927$ | 4.4.65057.1 | None | \(0\) | \(1\) | \(-4\) | \(-7\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.dn | $4$ | $337.927$ | 4.4.65057.1 | None | \(0\) | \(1\) | \(4\) | \(7\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.do | $4$ | $337.927$ | 4.4.15317.1 | None | \(0\) | \(2\) | \(-4\) | \(-3\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.dp | $4$ | $337.927$ | 4.4.13888.1 | None | \(0\) | \(2\) | \(-4\) | \(-2\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.dq | $4$ | $337.927$ | 4.4.13888.1 | None | \(0\) | \(2\) | \(4\) | \(2\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.dr | $4$ | $337.927$ | \(\Q(\zeta_{24})^+\) | None | \(0\) | \(4\) | \(-4\) | \(8\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.ds | $4$ | $337.927$ | \(\Q(\zeta_{24})^+\) | None | \(0\) | \(4\) | \(4\) | \(-8\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.dt | $5$ | $337.927$ | 5.5.5680693.1 | None | \(0\) | \(-3\) | \(-5\) | \(2\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.du | $5$ | $337.927$ | 5.5.5680693.1 | None | \(0\) | \(-3\) | \(5\) | \(-2\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.dv | $5$ | $337.927$ | 5.5.4180641.1 | None | \(0\) | \(-2\) | \(-5\) | \(3\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.dw | $5$ | $337.927$ | 5.5.4180641.1 | None | \(0\) | \(-2\) | \(5\) | \(-3\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.dx | $5$ | $337.927$ | 5.5.13955077.1 | None | \(0\) | \(0\) | \(5\) | \(-2\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.dy | $5$ | $337.927$ | \(\Q(\zeta_{22})^+\) | None | \(0\) | \(4\) | \(-5\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.dz | $5$ | $337.927$ | \(\Q(\zeta_{22})^+\) | None | \(0\) | \(4\) | \(5\) | \(2\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.ea | $5$ | $337.927$ | \(\Q(\zeta_{22})^+\) | None | \(0\) | \(5\) | \(-5\) | \(3\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.eb | $5$ | $337.927$ | \(\Q(\zeta_{22})^+\) | None | \(0\) | \(5\) | \(5\) | \(-3\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.ec | $6$ | $337.927$ | 6.6.4829696.1 | None | \(0\) | \(-4\) | \(-6\) | \(6\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.ed | $6$ | $337.927$ | 6.6.4829696.1 | None | \(0\) | \(-4\) | \(6\) | \(-6\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.ee | $6$ | $337.927$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-1\) | \(-6\) | \(7\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.ef | $6$ | $337.927$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-1\) | \(6\) | \(-7\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.eg | $6$ | $337.927$ | 6.6.35140096.1 | None | \(0\) | \(0\) | \(-6\) | \(-6\) | $+$ | $+$ | $+$ | ||
| 42320.2.a.eh | $6$ | $337.927$ | 6.6.35140096.1 | None | \(0\) | \(0\) | \(6\) | \(6\) | $+$ | $-$ | $+$ | ||
| 42320.2.a.ei | $6$ | $337.927$ | 6.6.252973568.1 | None | \(0\) | \(2\) | \(-6\) | \(2\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.ej | $6$ | $337.927$ | 6.6.252973568.1 | None | \(0\) | \(2\) | \(6\) | \(-2\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.ek | $6$ | $337.927$ | 6.6.27387072.1 | None | \(0\) | \(6\) | \(-6\) | \(-6\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.el | $6$ | $337.927$ | 6.6.27387072.1 | None | \(0\) | \(6\) | \(6\) | \(6\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.em | $8$ | $337.927$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-4\) | \(-8\) | \(2\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.en | $8$ | $337.927$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-4\) | \(8\) | \(-2\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.eo | $10$ | $337.927$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-4\) | \(-10\) | \(-7\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.ep | $10$ | $337.927$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-4\) | \(10\) | \(7\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.eq | $10$ | $337.927$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(-10\) | \(4\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.er | $10$ | $337.927$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(10\) | \(-4\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.es | $10$ | $337.927$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(4\) | \(-10\) | \(-8\) | $+$ | $+$ | $+$ | ||
| 42320.2.a.et | $10$ | $337.927$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(4\) | \(10\) | \(8\) | $+$ | $-$ | $+$ | ||
| 42320.2.a.eu | $10$ | $337.927$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(5\) | \(-10\) | \(-9\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.ev | $10$ | $337.927$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(5\) | \(-10\) | \(-5\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.ew | $10$ | $337.927$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(5\) | \(10\) | \(5\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.ex | $10$ | $337.927$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(5\) | \(10\) | \(9\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.ey | $12$ | $337.927$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-2\) | \(-12\) | \(8\) | $+$ | $+$ | $-$ | ||
| 42320.2.a.ez | $12$ | $337.927$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-2\) | \(12\) | \(-8\) | $+$ | $-$ | $-$ | ||
| 42320.2.a.fa | $15$ | $337.927$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(-5\) | \(-15\) | \(-4\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.fb | $15$ | $337.927$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(-5\) | \(15\) | \(4\) | $-$ | $-$ | $-$ | ||
| 42320.2.a.fc | $15$ | $337.927$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(0\) | \(-15\) | \(6\) | $-$ | $+$ | $-$ | ||
| 42320.2.a.fd | $15$ | $337.927$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(0\) | \(15\) | \(-6\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.fe | $16$ | $337.927$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-4\) | \(-16\) | \(12\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.ff | $16$ | $337.927$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-4\) | \(16\) | \(-12\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.fg | $16$ | $337.927$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(4\) | \(-16\) | \(-12\) | $-$ | $+$ | $+$ | ||
| 42320.2.a.fh | $16$ | $337.927$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(4\) | \(16\) | \(12\) | $-$ | $-$ | $+$ | ||
| 42320.2.a.fi | $20$ | $337.927$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(4\) | \(-20\) | \(-16\) | $+$ | $+$ | $+$ | ||
| 42320.2.a.fj | $20$ | $337.927$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(4\) | \(20\) | \(16\) | $+$ | $-$ | $+$ | ||
| 42320.2.a.fk | $24$ | $337.927$ | None | \(0\) | \(4\) | \(-24\) | \(-8\) | $+$ | $+$ | $+$ | |||
| 42320.2.a.fl | $24$ | $337.927$ | None | \(0\) | \(4\) | \(24\) | \(8\) | $+$ | $-$ | $+$ | |||
| 42320.2.a.fm | $25$ | $337.927$ | None | \(0\) | \(-10\) | \(-25\) | \(14\) | $-$ | $+$ | $-$ | |||
| 42320.2.a.fn | $25$ | $337.927$ | None | \(0\) | \(-10\) | \(25\) | \(-14\) | $-$ | $-$ | $+$ | |||
| 42320.2.a.fo | $25$ | $337.927$ | None | \(0\) | \(0\) | \(-25\) | \(6\) | $-$ | $+$ | $+$ | |||
| 42320.2.a.fp | $25$ | $337.927$ | None | \(0\) | \(0\) | \(25\) | \(-6\) | $-$ | $-$ | $-$ | |||
| 42320.2.a.fq | $25$ | $337.927$ | None | \(0\) | \(5\) | \(-25\) | \(1\) | $+$ | $+$ | $+$ | |||
| 42320.2.a.fr | $25$ | $337.927$ | None | \(0\) | \(5\) | \(25\) | \(-1\) | $+$ | $-$ | $-$ | |||
| 42320.2.a.fs | $30$ | $337.927$ | None | \(0\) | \(-5\) | \(-30\) | \(-2\) | $+$ | $+$ | $+$ | |||
| 42320.2.a.ft | $30$ | $337.927$ | None | \(0\) | \(-5\) | \(30\) | \(2\) | $+$ | $-$ | $-$ | |||
| 42320.2.a.fu | $30$ | $337.927$ | None | \(0\) | \(6\) | \(-30\) | \(-2\) | $+$ | $+$ | $-$ | |||
| 42320.2.a.fv | $30$ | $337.927$ | None | \(0\) | \(6\) | \(30\) | \(2\) | $+$ | $-$ | $+$ | |||
| 42320.2.a.fw | $35$ | $337.927$ | None | \(0\) | \(-6\) | \(-35\) | \(1\) | $+$ | $+$ | $-$ | |||
| 42320.2.a.fx | $35$ | $337.927$ | None | \(0\) | \(-6\) | \(35\) | \(-1\) | $+$ | $-$ | $+$ | |||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(42320))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(42320)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(368))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(460))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(920))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1058))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1840))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2116))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2645))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4232))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5290))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8464))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(10580))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21160))\)\(^{\oplus 2}\)