Defining parameters
| Level: | \( N \) | \(=\) | \( 42237 = 3^{2} \cdot 13 \cdot 19^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 42237.g (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
| Character field: | \(\Q\) | ||
| Sturm bound: | \(10640\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(42237, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 5400 | 1360 | 4040 |
| Cusp forms | 5240 | 1360 | 3880 |
| Eisenstein series | 160 | 0 | 160 |
Decomposition of \(S_{2}^{\mathrm{new}}(42237, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(42237, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(42237, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(741, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1083, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2223, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3249, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(14079, [\chi])\)\(^{\oplus 2}\)