Properties

Label 420.3.m
Level $420$
Weight $3$
Character orbit 420.m
Rep. character $\chi_{420}(251,\cdot)$
Character field $\Q$
Dimension $128$
Newform subspaces $1$
Sturm bound $288$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 420.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 84 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(420, [\chi])\).

Total New Old
Modular forms 200 128 72
Cusp forms 184 128 56
Eisenstein series 16 0 16

Trace form

\( 128 q - 16 q^{16} + 100 q^{18} + 8 q^{21} + 56 q^{22} + 640 q^{25} - 60 q^{28} - 40 q^{36} + 160 q^{37} - 232 q^{42} + 176 q^{46} + 48 q^{49} - 208 q^{58} - 140 q^{60} - 288 q^{64} + 60 q^{70} - 456 q^{72}+ \cdots - 320 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(420, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
420.3.m.a 420.m 84.h $128$ $11.444$ None 420.3.m.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(420, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(420, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)