Properties

Label 415.2.a.d.1.6
Level $415$
Weight $2$
Character 415.1
Self dual yes
Analytic conductor $3.314$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [415,2,Mod(1,415)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("415.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(415, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 415 = 5 \cdot 83 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 415.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.31379168388\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: 7.7.179711353.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 8x^{5} + 6x^{4} + 16x^{3} - 9x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.51525\) of defining polynomial
Character \(\chi\) \(=\) 415.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.24504 q^{2} -0.166440 q^{3} -0.449886 q^{4} -1.00000 q^{5} -0.207224 q^{6} -2.60638 q^{7} -3.05020 q^{8} -2.97230 q^{9} -1.24504 q^{10} -5.50271 q^{11} +0.0748791 q^{12} +5.27316 q^{13} -3.24504 q^{14} +0.166440 q^{15} -2.89783 q^{16} -2.31115 q^{17} -3.70062 q^{18} +5.82565 q^{19} +0.449886 q^{20} +0.433806 q^{21} -6.85108 q^{22} +2.07800 q^{23} +0.507675 q^{24} +1.00000 q^{25} +6.56527 q^{26} +0.994030 q^{27} +1.17257 q^{28} -8.09462 q^{29} +0.207224 q^{30} +8.07873 q^{31} +2.49249 q^{32} +0.915872 q^{33} -2.87746 q^{34} +2.60638 q^{35} +1.33719 q^{36} -10.9885 q^{37} +7.25314 q^{38} -0.877665 q^{39} +3.05020 q^{40} -4.75856 q^{41} +0.540104 q^{42} -1.47228 q^{43} +2.47559 q^{44} +2.97230 q^{45} +2.58718 q^{46} -9.21328 q^{47} +0.482315 q^{48} -0.206786 q^{49} +1.24504 q^{50} +0.384668 q^{51} -2.37232 q^{52} -2.54774 q^{53} +1.23760 q^{54} +5.50271 q^{55} +7.94997 q^{56} -0.969621 q^{57} -10.0781 q^{58} +12.9647 q^{59} -0.0748791 q^{60} -8.32727 q^{61} +10.0583 q^{62} +7.74694 q^{63} +8.89890 q^{64} -5.27316 q^{65} +1.14029 q^{66} -4.09786 q^{67} +1.03975 q^{68} -0.345862 q^{69} +3.24504 q^{70} +1.35468 q^{71} +9.06609 q^{72} +9.69125 q^{73} -13.6810 q^{74} -0.166440 q^{75} -2.62088 q^{76} +14.3422 q^{77} -1.09272 q^{78} -7.99410 q^{79} +2.89783 q^{80} +8.75145 q^{81} -5.92458 q^{82} -1.00000 q^{83} -0.195163 q^{84} +2.31115 q^{85} -1.83304 q^{86} +1.34727 q^{87} +16.7844 q^{88} -7.45495 q^{89} +3.70062 q^{90} -13.7439 q^{91} -0.934862 q^{92} -1.34462 q^{93} -11.4709 q^{94} -5.82565 q^{95} -0.414850 q^{96} -10.1954 q^{97} -0.257455 q^{98} +16.3557 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 3 q^{2} - 5 q^{3} + 7 q^{4} - 7 q^{5} - 6 q^{7} - 12 q^{8} + 2 q^{9} + 3 q^{10} - 2 q^{11} - 11 q^{12} - 5 q^{13} - 11 q^{14} + 5 q^{15} + 7 q^{16} - 25 q^{17} - 4 q^{18} + 6 q^{19} - 7 q^{20} + 2 q^{21}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24504 0.880373 0.440187 0.897906i \(-0.354912\pi\)
0.440187 + 0.897906i \(0.354912\pi\)
\(3\) −0.166440 −0.0960942 −0.0480471 0.998845i \(-0.515300\pi\)
−0.0480471 + 0.998845i \(0.515300\pi\)
\(4\) −0.449886 −0.224943
\(5\) −1.00000 −0.447214
\(6\) −0.207224 −0.0845988
\(7\) −2.60638 −0.985119 −0.492559 0.870279i \(-0.663939\pi\)
−0.492559 + 0.870279i \(0.663939\pi\)
\(8\) −3.05020 −1.07841
\(9\) −2.97230 −0.990766
\(10\) −1.24504 −0.393715
\(11\) −5.50271 −1.65913 −0.829565 0.558409i \(-0.811412\pi\)
−0.829565 + 0.558409i \(0.811412\pi\)
\(12\) 0.0748791 0.0216157
\(13\) 5.27316 1.46251 0.731256 0.682103i \(-0.238935\pi\)
0.731256 + 0.682103i \(0.238935\pi\)
\(14\) −3.24504 −0.867272
\(15\) 0.166440 0.0429746
\(16\) −2.89783 −0.724458
\(17\) −2.31115 −0.560536 −0.280268 0.959922i \(-0.590423\pi\)
−0.280268 + 0.959922i \(0.590423\pi\)
\(18\) −3.70062 −0.872244
\(19\) 5.82565 1.33650 0.668248 0.743939i \(-0.267045\pi\)
0.668248 + 0.743939i \(0.267045\pi\)
\(20\) 0.449886 0.100598
\(21\) 0.433806 0.0946642
\(22\) −6.85108 −1.46065
\(23\) 2.07800 0.433292 0.216646 0.976250i \(-0.430488\pi\)
0.216646 + 0.976250i \(0.430488\pi\)
\(24\) 0.507675 0.103629
\(25\) 1.00000 0.200000
\(26\) 6.56527 1.28756
\(27\) 0.994030 0.191301
\(28\) 1.17257 0.221596
\(29\) −8.09462 −1.50313 −0.751566 0.659658i \(-0.770701\pi\)
−0.751566 + 0.659658i \(0.770701\pi\)
\(30\) 0.207224 0.0378337
\(31\) 8.07873 1.45098 0.725492 0.688231i \(-0.241612\pi\)
0.725492 + 0.688231i \(0.241612\pi\)
\(32\) 2.49249 0.440614
\(33\) 0.915872 0.159433
\(34\) −2.87746 −0.493481
\(35\) 2.60638 0.440559
\(36\) 1.33719 0.222866
\(37\) −10.9885 −1.80649 −0.903247 0.429121i \(-0.858823\pi\)
−0.903247 + 0.429121i \(0.858823\pi\)
\(38\) 7.25314 1.17661
\(39\) −0.877665 −0.140539
\(40\) 3.05020 0.482278
\(41\) −4.75856 −0.743162 −0.371581 0.928401i \(-0.621184\pi\)
−0.371581 + 0.928401i \(0.621184\pi\)
\(42\) 0.540104 0.0833399
\(43\) −1.47228 −0.224521 −0.112260 0.993679i \(-0.535809\pi\)
−0.112260 + 0.993679i \(0.535809\pi\)
\(44\) 2.47559 0.373210
\(45\) 2.97230 0.443084
\(46\) 2.58718 0.381459
\(47\) −9.21328 −1.34389 −0.671947 0.740599i \(-0.734542\pi\)
−0.671947 + 0.740599i \(0.734542\pi\)
\(48\) 0.482315 0.0696162
\(49\) −0.206786 −0.0295408
\(50\) 1.24504 0.176075
\(51\) 0.384668 0.0538642
\(52\) −2.37232 −0.328982
\(53\) −2.54774 −0.349959 −0.174980 0.984572i \(-0.555986\pi\)
−0.174980 + 0.984572i \(0.555986\pi\)
\(54\) 1.23760 0.168416
\(55\) 5.50271 0.741986
\(56\) 7.94997 1.06236
\(57\) −0.969621 −0.128429
\(58\) −10.0781 −1.32332
\(59\) 12.9647 1.68787 0.843933 0.536449i \(-0.180234\pi\)
0.843933 + 0.536449i \(0.180234\pi\)
\(60\) −0.0748791 −0.00966684
\(61\) −8.32727 −1.06620 −0.533099 0.846053i \(-0.678973\pi\)
−0.533099 + 0.846053i \(0.678973\pi\)
\(62\) 10.0583 1.27741
\(63\) 7.74694 0.976022
\(64\) 8.89890 1.11236
\(65\) −5.27316 −0.654055
\(66\) 1.14029 0.140360
\(67\) −4.09786 −0.500633 −0.250316 0.968164i \(-0.580535\pi\)
−0.250316 + 0.968164i \(0.580535\pi\)
\(68\) 1.03975 0.126089
\(69\) −0.345862 −0.0416369
\(70\) 3.24504 0.387856
\(71\) 1.35468 0.160771 0.0803856 0.996764i \(-0.474385\pi\)
0.0803856 + 0.996764i \(0.474385\pi\)
\(72\) 9.06609 1.06845
\(73\) 9.69125 1.13427 0.567137 0.823623i \(-0.308051\pi\)
0.567137 + 0.823623i \(0.308051\pi\)
\(74\) −13.6810 −1.59039
\(75\) −0.166440 −0.0192188
\(76\) −2.62088 −0.300635
\(77\) 14.3422 1.63444
\(78\) −1.09272 −0.123727
\(79\) −7.99410 −0.899407 −0.449703 0.893178i \(-0.648470\pi\)
−0.449703 + 0.893178i \(0.648470\pi\)
\(80\) 2.89783 0.323987
\(81\) 8.75145 0.972383
\(82\) −5.92458 −0.654260
\(83\) −1.00000 −0.109764
\(84\) −0.195163 −0.0212941
\(85\) 2.31115 0.250679
\(86\) −1.83304 −0.197662
\(87\) 1.34727 0.144442
\(88\) 16.7844 1.78922
\(89\) −7.45495 −0.790223 −0.395111 0.918633i \(-0.629294\pi\)
−0.395111 + 0.918633i \(0.629294\pi\)
\(90\) 3.70062 0.390079
\(91\) −13.7439 −1.44075
\(92\) −0.934862 −0.0974661
\(93\) −1.34462 −0.139431
\(94\) −11.4709 −1.18313
\(95\) −5.82565 −0.597699
\(96\) −0.414850 −0.0423404
\(97\) −10.1954 −1.03519 −0.517595 0.855626i \(-0.673173\pi\)
−0.517595 + 0.855626i \(0.673173\pi\)
\(98\) −0.257455 −0.0260069
\(99\) 16.3557 1.64381
\(100\) −0.449886 −0.0449886
\(101\) 12.4843 1.24223 0.621117 0.783718i \(-0.286679\pi\)
0.621117 + 0.783718i \(0.286679\pi\)
\(102\) 0.478925 0.0474206
\(103\) −1.08906 −0.107309 −0.0536544 0.998560i \(-0.517087\pi\)
−0.0536544 + 0.998560i \(0.517087\pi\)
\(104\) −16.0842 −1.57718
\(105\) −0.433806 −0.0423351
\(106\) −3.17203 −0.308095
\(107\) −6.96239 −0.673079 −0.336540 0.941669i \(-0.609257\pi\)
−0.336540 + 0.941669i \(0.609257\pi\)
\(108\) −0.447200 −0.0430318
\(109\) 1.12751 0.107996 0.0539978 0.998541i \(-0.482804\pi\)
0.0539978 + 0.998541i \(0.482804\pi\)
\(110\) 6.85108 0.653225
\(111\) 1.82892 0.173594
\(112\) 7.55285 0.713677
\(113\) −10.3145 −0.970305 −0.485152 0.874430i \(-0.661236\pi\)
−0.485152 + 0.874430i \(0.661236\pi\)
\(114\) −1.20721 −0.113066
\(115\) −2.07800 −0.193774
\(116\) 3.64165 0.338119
\(117\) −15.6734 −1.44901
\(118\) 16.1416 1.48595
\(119\) 6.02373 0.552194
\(120\) −0.507675 −0.0463442
\(121\) 19.2799 1.75272
\(122\) −10.3677 −0.938652
\(123\) 0.792015 0.0714136
\(124\) −3.63451 −0.326388
\(125\) −1.00000 −0.0894427
\(126\) 9.64521 0.859264
\(127\) 1.29708 0.115097 0.0575487 0.998343i \(-0.481672\pi\)
0.0575487 + 0.998343i \(0.481672\pi\)
\(128\) 6.09447 0.538680
\(129\) 0.245046 0.0215751
\(130\) −6.56527 −0.575813
\(131\) −4.44343 −0.388225 −0.194112 0.980979i \(-0.562183\pi\)
−0.194112 + 0.980979i \(0.562183\pi\)
\(132\) −0.412038 −0.0358633
\(133\) −15.1839 −1.31661
\(134\) −5.10198 −0.440744
\(135\) −0.994030 −0.0855525
\(136\) 7.04945 0.604486
\(137\) 10.1106 0.863803 0.431902 0.901921i \(-0.357843\pi\)
0.431902 + 0.901921i \(0.357843\pi\)
\(138\) −0.430611 −0.0366560
\(139\) 16.7621 1.42174 0.710870 0.703324i \(-0.248302\pi\)
0.710870 + 0.703324i \(0.248302\pi\)
\(140\) −1.17257 −0.0991006
\(141\) 1.53346 0.129141
\(142\) 1.68663 0.141539
\(143\) −29.0167 −2.42650
\(144\) 8.61322 0.717768
\(145\) 8.09462 0.672221
\(146\) 12.0659 0.998585
\(147\) 0.0344174 0.00283870
\(148\) 4.94356 0.406358
\(149\) −8.18290 −0.670369 −0.335185 0.942152i \(-0.608799\pi\)
−0.335185 + 0.942152i \(0.608799\pi\)
\(150\) −0.207224 −0.0169198
\(151\) −2.13120 −0.173434 −0.0867172 0.996233i \(-0.527638\pi\)
−0.0867172 + 0.996233i \(0.527638\pi\)
\(152\) −17.7694 −1.44129
\(153\) 6.86942 0.555360
\(154\) 17.8565 1.43892
\(155\) −8.07873 −0.648899
\(156\) 0.394849 0.0316132
\(157\) −15.5472 −1.24080 −0.620399 0.784286i \(-0.713029\pi\)
−0.620399 + 0.784286i \(0.713029\pi\)
\(158\) −9.95294 −0.791814
\(159\) 0.424046 0.0336290
\(160\) −2.49249 −0.197049
\(161\) −5.41605 −0.426845
\(162\) 10.8959 0.856060
\(163\) −20.8580 −1.63373 −0.816863 0.576832i \(-0.804289\pi\)
−0.816863 + 0.576832i \(0.804289\pi\)
\(164\) 2.14081 0.167169
\(165\) −0.915872 −0.0713006
\(166\) −1.24504 −0.0966335
\(167\) 9.23380 0.714533 0.357267 0.934002i \(-0.383709\pi\)
0.357267 + 0.934002i \(0.383709\pi\)
\(168\) −1.32319 −0.102087
\(169\) 14.8062 1.13894
\(170\) 2.87746 0.220691
\(171\) −17.3156 −1.32415
\(172\) 0.662358 0.0505043
\(173\) −13.0427 −0.991618 −0.495809 0.868432i \(-0.665128\pi\)
−0.495809 + 0.868432i \(0.665128\pi\)
\(174\) 1.67740 0.127163
\(175\) −2.60638 −0.197024
\(176\) 15.9459 1.20197
\(177\) −2.15785 −0.162194
\(178\) −9.28167 −0.695691
\(179\) −0.700134 −0.0523305 −0.0261652 0.999658i \(-0.508330\pi\)
−0.0261652 + 0.999658i \(0.508330\pi\)
\(180\) −1.33719 −0.0996686
\(181\) 19.7238 1.46606 0.733031 0.680196i \(-0.238105\pi\)
0.733031 + 0.680196i \(0.238105\pi\)
\(182\) −17.1116 −1.26840
\(183\) 1.38599 0.102455
\(184\) −6.33830 −0.467266
\(185\) 10.9885 0.807888
\(186\) −1.67411 −0.122751
\(187\) 12.7176 0.930002
\(188\) 4.14492 0.302300
\(189\) −2.59082 −0.188454
\(190\) −7.25314 −0.526198
\(191\) 23.1169 1.67268 0.836339 0.548213i \(-0.184692\pi\)
0.836339 + 0.548213i \(0.184692\pi\)
\(192\) −1.48113 −0.106892
\(193\) 5.49746 0.395716 0.197858 0.980231i \(-0.436602\pi\)
0.197858 + 0.980231i \(0.436602\pi\)
\(194\) −12.6937 −0.911353
\(195\) 0.877665 0.0628509
\(196\) 0.0930299 0.00664499
\(197\) −12.7033 −0.905072 −0.452536 0.891746i \(-0.649481\pi\)
−0.452536 + 0.891746i \(0.649481\pi\)
\(198\) 20.3634 1.44717
\(199\) 16.0755 1.13956 0.569781 0.821796i \(-0.307028\pi\)
0.569781 + 0.821796i \(0.307028\pi\)
\(200\) −3.05020 −0.215681
\(201\) 0.682048 0.0481079
\(202\) 15.5434 1.09363
\(203\) 21.0976 1.48076
\(204\) −0.173057 −0.0121164
\(205\) 4.75856 0.332352
\(206\) −1.35592 −0.0944717
\(207\) −6.17643 −0.429291
\(208\) −15.2807 −1.05953
\(209\) −32.0569 −2.21742
\(210\) −0.540104 −0.0372707
\(211\) 3.67598 0.253065 0.126532 0.991962i \(-0.459615\pi\)
0.126532 + 0.991962i \(0.459615\pi\)
\(212\) 1.14619 0.0787208
\(213\) −0.225473 −0.0154492
\(214\) −8.66842 −0.592561
\(215\) 1.47228 0.100409
\(216\) −3.03198 −0.206300
\(217\) −21.0562 −1.42939
\(218\) 1.40379 0.0950764
\(219\) −1.61301 −0.108997
\(220\) −2.47559 −0.166905
\(221\) −12.1871 −0.819790
\(222\) 2.27707 0.152827
\(223\) −20.3938 −1.36567 −0.682834 0.730573i \(-0.739253\pi\)
−0.682834 + 0.730573i \(0.739253\pi\)
\(224\) −6.49637 −0.434057
\(225\) −2.97230 −0.198153
\(226\) −12.8419 −0.854230
\(227\) 5.88815 0.390810 0.195405 0.980723i \(-0.437398\pi\)
0.195405 + 0.980723i \(0.437398\pi\)
\(228\) 0.436219 0.0288893
\(229\) −7.64169 −0.504977 −0.252489 0.967600i \(-0.581249\pi\)
−0.252489 + 0.967600i \(0.581249\pi\)
\(230\) −2.58718 −0.170594
\(231\) −2.38711 −0.157060
\(232\) 24.6902 1.62099
\(233\) −12.3326 −0.807933 −0.403966 0.914774i \(-0.632369\pi\)
−0.403966 + 0.914774i \(0.632369\pi\)
\(234\) −19.5139 −1.27567
\(235\) 9.21328 0.601008
\(236\) −5.83266 −0.379674
\(237\) 1.33054 0.0864278
\(238\) 7.49976 0.486137
\(239\) −13.8285 −0.894494 −0.447247 0.894410i \(-0.647596\pi\)
−0.447247 + 0.894410i \(0.647596\pi\)
\(240\) −0.482315 −0.0311333
\(241\) −23.3707 −1.50544 −0.752720 0.658341i \(-0.771259\pi\)
−0.752720 + 0.658341i \(0.771259\pi\)
\(242\) 24.0041 1.54304
\(243\) −4.43868 −0.284741
\(244\) 3.74632 0.239834
\(245\) 0.206786 0.0132110
\(246\) 0.986087 0.0628706
\(247\) 30.7196 1.95464
\(248\) −24.6417 −1.56475
\(249\) 0.166440 0.0105477
\(250\) −1.24504 −0.0787430
\(251\) 7.61182 0.480454 0.240227 0.970717i \(-0.422778\pi\)
0.240227 + 0.970717i \(0.422778\pi\)
\(252\) −3.48524 −0.219549
\(253\) −11.4346 −0.718889
\(254\) 1.61491 0.101329
\(255\) −0.384668 −0.0240888
\(256\) −10.2100 −0.638123
\(257\) −7.04602 −0.439519 −0.219759 0.975554i \(-0.570527\pi\)
−0.219759 + 0.975554i \(0.570527\pi\)
\(258\) 0.305091 0.0189942
\(259\) 28.6401 1.77961
\(260\) 2.37232 0.147125
\(261\) 24.0596 1.48925
\(262\) −5.53223 −0.341783
\(263\) 26.8343 1.65467 0.827337 0.561705i \(-0.189854\pi\)
0.827337 + 0.561705i \(0.189854\pi\)
\(264\) −2.79359 −0.171934
\(265\) 2.54774 0.156506
\(266\) −18.9044 −1.15911
\(267\) 1.24080 0.0759358
\(268\) 1.84357 0.112614
\(269\) 19.0639 1.16235 0.581173 0.813780i \(-0.302594\pi\)
0.581173 + 0.813780i \(0.302594\pi\)
\(270\) −1.23760 −0.0753181
\(271\) 16.0663 0.975958 0.487979 0.872855i \(-0.337734\pi\)
0.487979 + 0.872855i \(0.337734\pi\)
\(272\) 6.69732 0.406084
\(273\) 2.28753 0.138448
\(274\) 12.5880 0.760469
\(275\) −5.50271 −0.331826
\(276\) 0.155598 0.00936593
\(277\) 8.87248 0.533096 0.266548 0.963822i \(-0.414117\pi\)
0.266548 + 0.963822i \(0.414117\pi\)
\(278\) 20.8694 1.25166
\(279\) −24.0124 −1.43758
\(280\) −7.94997 −0.475101
\(281\) −30.5416 −1.82196 −0.910980 0.412450i \(-0.864673\pi\)
−0.910980 + 0.412450i \(0.864673\pi\)
\(282\) 1.90921 0.113692
\(283\) −16.4272 −0.976498 −0.488249 0.872704i \(-0.662364\pi\)
−0.488249 + 0.872704i \(0.662364\pi\)
\(284\) −0.609452 −0.0361643
\(285\) 0.969621 0.0574354
\(286\) −36.1268 −2.13622
\(287\) 12.4026 0.732103
\(288\) −7.40842 −0.436545
\(289\) −11.6586 −0.685800
\(290\) 10.0781 0.591806
\(291\) 1.69693 0.0994757
\(292\) −4.35996 −0.255147
\(293\) −5.26648 −0.307671 −0.153836 0.988096i \(-0.549163\pi\)
−0.153836 + 0.988096i \(0.549163\pi\)
\(294\) 0.0428509 0.00249912
\(295\) −12.9647 −0.754837
\(296\) 33.5170 1.94814
\(297\) −5.46986 −0.317394
\(298\) −10.1880 −0.590175
\(299\) 10.9576 0.633695
\(300\) 0.0748791 0.00432314
\(301\) 3.83732 0.221179
\(302\) −2.65342 −0.152687
\(303\) −2.07789 −0.119372
\(304\) −16.8817 −0.968234
\(305\) 8.32727 0.476818
\(306\) 8.55267 0.488924
\(307\) −15.1037 −0.862011 −0.431006 0.902349i \(-0.641841\pi\)
−0.431006 + 0.902349i \(0.641841\pi\)
\(308\) −6.45234 −0.367656
\(309\) 0.181264 0.0103118
\(310\) −10.0583 −0.571274
\(311\) −5.33336 −0.302427 −0.151214 0.988501i \(-0.548318\pi\)
−0.151214 + 0.988501i \(0.548318\pi\)
\(312\) 2.67705 0.151558
\(313\) −4.59120 −0.259510 −0.129755 0.991546i \(-0.541419\pi\)
−0.129755 + 0.991546i \(0.541419\pi\)
\(314\) −19.3568 −1.09237
\(315\) −7.74694 −0.436490
\(316\) 3.59643 0.202315
\(317\) 27.9269 1.56853 0.784266 0.620425i \(-0.213040\pi\)
0.784266 + 0.620425i \(0.213040\pi\)
\(318\) 0.527953 0.0296061
\(319\) 44.5424 2.49389
\(320\) −8.89890 −0.497464
\(321\) 1.15882 0.0646790
\(322\) −6.74318 −0.375783
\(323\) −13.4639 −0.749153
\(324\) −3.93715 −0.218731
\(325\) 5.27316 0.292502
\(326\) −25.9690 −1.43829
\(327\) −0.187662 −0.0103778
\(328\) 14.5145 0.801431
\(329\) 24.0133 1.32390
\(330\) −1.14029 −0.0627711
\(331\) 3.27519 0.180021 0.0900103 0.995941i \(-0.471310\pi\)
0.0900103 + 0.995941i \(0.471310\pi\)
\(332\) 0.449886 0.0246907
\(333\) 32.6610 1.78981
\(334\) 11.4964 0.629056
\(335\) 4.09786 0.223890
\(336\) −1.25710 −0.0685802
\(337\) −17.9030 −0.975238 −0.487619 0.873057i \(-0.662134\pi\)
−0.487619 + 0.873057i \(0.662134\pi\)
\(338\) 18.4343 1.00269
\(339\) 1.71674 0.0932407
\(340\) −1.03975 −0.0563885
\(341\) −44.4550 −2.40737
\(342\) −21.5585 −1.16575
\(343\) 18.7836 1.01422
\(344\) 4.49074 0.242125
\(345\) 0.345862 0.0186206
\(346\) −16.2386 −0.872994
\(347\) −13.1318 −0.704950 −0.352475 0.935821i \(-0.614660\pi\)
−0.352475 + 0.935821i \(0.614660\pi\)
\(348\) −0.606117 −0.0324913
\(349\) 16.3519 0.875296 0.437648 0.899146i \(-0.355812\pi\)
0.437648 + 0.899146i \(0.355812\pi\)
\(350\) −3.24504 −0.173454
\(351\) 5.24168 0.279780
\(352\) −13.7155 −0.731036
\(353\) −15.8664 −0.844484 −0.422242 0.906483i \(-0.638757\pi\)
−0.422242 + 0.906483i \(0.638757\pi\)
\(354\) −2.68660 −0.142791
\(355\) −1.35468 −0.0718990
\(356\) 3.35388 0.177755
\(357\) −1.00259 −0.0530627
\(358\) −0.871692 −0.0460703
\(359\) −29.0900 −1.53531 −0.767657 0.640861i \(-0.778578\pi\)
−0.767657 + 0.640861i \(0.778578\pi\)
\(360\) −9.06609 −0.477825
\(361\) 14.9382 0.786220
\(362\) 24.5569 1.29068
\(363\) −3.20894 −0.168426
\(364\) 6.18317 0.324086
\(365\) −9.69125 −0.507263
\(366\) 1.72561 0.0901990
\(367\) −11.2739 −0.588494 −0.294247 0.955729i \(-0.595069\pi\)
−0.294247 + 0.955729i \(0.595069\pi\)
\(368\) −6.02168 −0.313902
\(369\) 14.1439 0.736300
\(370\) 13.6810 0.711243
\(371\) 6.64038 0.344751
\(372\) 0.604928 0.0313640
\(373\) 35.1170 1.81829 0.909143 0.416483i \(-0.136737\pi\)
0.909143 + 0.416483i \(0.136737\pi\)
\(374\) 15.8339 0.818749
\(375\) 0.166440 0.00859493
\(376\) 28.1023 1.44927
\(377\) −42.6842 −2.19835
\(378\) −3.22566 −0.165910
\(379\) 22.0532 1.13280 0.566400 0.824131i \(-0.308336\pi\)
0.566400 + 0.824131i \(0.308336\pi\)
\(380\) 2.62088 0.134448
\(381\) −0.215887 −0.0110602
\(382\) 28.7813 1.47258
\(383\) 17.5000 0.894208 0.447104 0.894482i \(-0.352455\pi\)
0.447104 + 0.894482i \(0.352455\pi\)
\(384\) −1.01436 −0.0517641
\(385\) −14.3422 −0.730944
\(386\) 6.84453 0.348377
\(387\) 4.37605 0.222447
\(388\) 4.58678 0.232859
\(389\) −8.92745 −0.452640 −0.226320 0.974053i \(-0.572669\pi\)
−0.226320 + 0.974053i \(0.572669\pi\)
\(390\) 1.09272 0.0553323
\(391\) −4.80256 −0.242876
\(392\) 0.630736 0.0318570
\(393\) 0.739565 0.0373061
\(394\) −15.8161 −0.796801
\(395\) 7.99410 0.402227
\(396\) −7.35820 −0.369764
\(397\) 12.1910 0.611851 0.305925 0.952056i \(-0.401034\pi\)
0.305925 + 0.952056i \(0.401034\pi\)
\(398\) 20.0146 1.00324
\(399\) 2.52720 0.126518
\(400\) −2.89783 −0.144892
\(401\) −24.0817 −1.20258 −0.601292 0.799030i \(-0.705347\pi\)
−0.601292 + 0.799030i \(0.705347\pi\)
\(402\) 0.849174 0.0423529
\(403\) 42.6005 2.12208
\(404\) −5.61651 −0.279432
\(405\) −8.75145 −0.434863
\(406\) 26.2673 1.30363
\(407\) 60.4664 2.99721
\(408\) −1.17331 −0.0580876
\(409\) 19.9182 0.984892 0.492446 0.870343i \(-0.336103\pi\)
0.492446 + 0.870343i \(0.336103\pi\)
\(410\) 5.92458 0.292594
\(411\) −1.68280 −0.0830065
\(412\) 0.489955 0.0241383
\(413\) −33.7910 −1.66275
\(414\) −7.68987 −0.377937
\(415\) 1.00000 0.0490881
\(416\) 13.1433 0.644403
\(417\) −2.78988 −0.136621
\(418\) −39.9120 −1.95216
\(419\) 23.7145 1.15853 0.579265 0.815140i \(-0.303340\pi\)
0.579265 + 0.815140i \(0.303340\pi\)
\(420\) 0.195163 0.00952299
\(421\) 28.9755 1.41218 0.706090 0.708123i \(-0.250458\pi\)
0.706090 + 0.708123i \(0.250458\pi\)
\(422\) 4.57672 0.222791
\(423\) 27.3846 1.33149
\(424\) 7.77111 0.377398
\(425\) −2.31115 −0.112107
\(426\) −0.280722 −0.0136010
\(427\) 21.7040 1.05033
\(428\) 3.13228 0.151404
\(429\) 4.82954 0.233172
\(430\) 1.83304 0.0883971
\(431\) −19.2694 −0.928173 −0.464086 0.885790i \(-0.653617\pi\)
−0.464086 + 0.885790i \(0.653617\pi\)
\(432\) −2.88053 −0.138590
\(433\) 2.96194 0.142342 0.0711710 0.997464i \(-0.477326\pi\)
0.0711710 + 0.997464i \(0.477326\pi\)
\(434\) −26.2158 −1.25840
\(435\) −1.34727 −0.0645966
\(436\) −0.507250 −0.0242929
\(437\) 12.1057 0.579093
\(438\) −2.00826 −0.0959582
\(439\) −22.7285 −1.08477 −0.542385 0.840130i \(-0.682479\pi\)
−0.542385 + 0.840130i \(0.682479\pi\)
\(440\) −16.7844 −0.800163
\(441\) 0.614628 0.0292680
\(442\) −15.1733 −0.721721
\(443\) −1.07815 −0.0512246 −0.0256123 0.999672i \(-0.508154\pi\)
−0.0256123 + 0.999672i \(0.508154\pi\)
\(444\) −0.822806 −0.0390487
\(445\) 7.45495 0.353398
\(446\) −25.3910 −1.20230
\(447\) 1.36196 0.0644186
\(448\) −23.1939 −1.09581
\(449\) −18.4216 −0.869371 −0.434685 0.900582i \(-0.643140\pi\)
−0.434685 + 0.900582i \(0.643140\pi\)
\(450\) −3.70062 −0.174449
\(451\) 26.1850 1.23300
\(452\) 4.64034 0.218263
\(453\) 0.354717 0.0166660
\(454\) 7.33096 0.344059
\(455\) 13.7439 0.644322
\(456\) 2.95753 0.138499
\(457\) 41.0275 1.91919 0.959594 0.281390i \(-0.0907954\pi\)
0.959594 + 0.281390i \(0.0907954\pi\)
\(458\) −9.51418 −0.444568
\(459\) −2.29735 −0.107231
\(460\) 0.934862 0.0435882
\(461\) 28.2754 1.31692 0.658459 0.752617i \(-0.271209\pi\)
0.658459 + 0.752617i \(0.271209\pi\)
\(462\) −2.97204 −0.138272
\(463\) −30.4928 −1.41712 −0.708560 0.705650i \(-0.750655\pi\)
−0.708560 + 0.705650i \(0.750655\pi\)
\(464\) 23.4568 1.08896
\(465\) 1.34462 0.0623555
\(466\) −15.3545 −0.711282
\(467\) 21.0201 0.972694 0.486347 0.873766i \(-0.338329\pi\)
0.486347 + 0.873766i \(0.338329\pi\)
\(468\) 7.05124 0.325944
\(469\) 10.6806 0.493183
\(470\) 11.4709 0.529111
\(471\) 2.58767 0.119234
\(472\) −39.5450 −1.82021
\(473\) 8.10154 0.372509
\(474\) 1.65657 0.0760887
\(475\) 5.82565 0.267299
\(476\) −2.70999 −0.124212
\(477\) 7.57264 0.346728
\(478\) −17.2170 −0.787489
\(479\) 14.2217 0.649805 0.324903 0.945747i \(-0.394668\pi\)
0.324903 + 0.945747i \(0.394668\pi\)
\(480\) 0.414850 0.0189352
\(481\) −57.9440 −2.64202
\(482\) −29.0974 −1.32535
\(483\) 0.901448 0.0410173
\(484\) −8.67374 −0.394261
\(485\) 10.1954 0.462951
\(486\) −5.52632 −0.250679
\(487\) 20.0391 0.908058 0.454029 0.890987i \(-0.349986\pi\)
0.454029 + 0.890987i \(0.349986\pi\)
\(488\) 25.3998 1.14979
\(489\) 3.47161 0.156992
\(490\) 0.257455 0.0116307
\(491\) −17.1588 −0.774368 −0.387184 0.922003i \(-0.626552\pi\)
−0.387184 + 0.922003i \(0.626552\pi\)
\(492\) −0.356316 −0.0160640
\(493\) 18.7079 0.842560
\(494\) 38.2470 1.72081
\(495\) −16.3557 −0.735134
\(496\) −23.4108 −1.05118
\(497\) −3.53081 −0.158379
\(498\) 0.207224 0.00928592
\(499\) −21.5451 −0.964493 −0.482247 0.876036i \(-0.660179\pi\)
−0.482247 + 0.876036i \(0.660179\pi\)
\(500\) 0.449886 0.0201195
\(501\) −1.53687 −0.0686625
\(502\) 9.47698 0.422978
\(503\) 29.7181 1.32506 0.662531 0.749034i \(-0.269482\pi\)
0.662531 + 0.749034i \(0.269482\pi\)
\(504\) −23.6297 −1.05255
\(505\) −12.4843 −0.555544
\(506\) −14.2365 −0.632891
\(507\) −2.46435 −0.109446
\(508\) −0.583539 −0.0258904
\(509\) 27.6673 1.22633 0.613165 0.789955i \(-0.289896\pi\)
0.613165 + 0.789955i \(0.289896\pi\)
\(510\) −0.478925 −0.0212072
\(511\) −25.2591 −1.11740
\(512\) −24.9007 −1.10047
\(513\) 5.79087 0.255673
\(514\) −8.77255 −0.386940
\(515\) 1.08906 0.0479899
\(516\) −0.110243 −0.00485317
\(517\) 50.6980 2.22970
\(518\) 35.6580 1.56672
\(519\) 2.17083 0.0952888
\(520\) 16.0842 0.705338
\(521\) 4.10603 0.179888 0.0899442 0.995947i \(-0.471331\pi\)
0.0899442 + 0.995947i \(0.471331\pi\)
\(522\) 29.9551 1.31110
\(523\) −33.1895 −1.45128 −0.725639 0.688076i \(-0.758456\pi\)
−0.725639 + 0.688076i \(0.758456\pi\)
\(524\) 1.99904 0.0873284
\(525\) 0.433806 0.0189328
\(526\) 33.4097 1.45673
\(527\) −18.6711 −0.813328
\(528\) −2.65404 −0.115502
\(529\) −18.6819 −0.812258
\(530\) 3.17203 0.137784
\(531\) −38.5351 −1.67228
\(532\) 6.83100 0.296161
\(533\) −25.0926 −1.08688
\(534\) 1.54484 0.0668519
\(535\) 6.96239 0.301010
\(536\) 12.4993 0.539886
\(537\) 0.116530 0.00502866
\(538\) 23.7352 1.02330
\(539\) 1.13788 0.0490121
\(540\) 0.447200 0.0192444
\(541\) −0.492759 −0.0211854 −0.0105927 0.999944i \(-0.503372\pi\)
−0.0105927 + 0.999944i \(0.503372\pi\)
\(542\) 20.0031 0.859207
\(543\) −3.28284 −0.140880
\(544\) −5.76051 −0.246980
\(545\) −1.12751 −0.0482971
\(546\) 2.84806 0.121886
\(547\) 7.24431 0.309744 0.154872 0.987935i \(-0.450503\pi\)
0.154872 + 0.987935i \(0.450503\pi\)
\(548\) −4.54860 −0.194306
\(549\) 24.7511 1.05635
\(550\) −6.85108 −0.292131
\(551\) −47.1564 −2.00893
\(552\) 1.05495 0.0449015
\(553\) 20.8357 0.886023
\(554\) 11.0466 0.469323
\(555\) −1.82892 −0.0776334
\(556\) −7.54101 −0.319810
\(557\) −7.27145 −0.308101 −0.154051 0.988063i \(-0.549232\pi\)
−0.154051 + 0.988063i \(0.549232\pi\)
\(558\) −29.8963 −1.26561
\(559\) −7.76357 −0.328364
\(560\) −7.55285 −0.319166
\(561\) −2.11672 −0.0893678
\(562\) −38.0254 −1.60401
\(563\) −36.9237 −1.55615 −0.778074 0.628173i \(-0.783803\pi\)
−0.778074 + 0.628173i \(0.783803\pi\)
\(564\) −0.689882 −0.0290493
\(565\) 10.3145 0.433934
\(566\) −20.4525 −0.859682
\(567\) −22.8096 −0.957913
\(568\) −4.13204 −0.173377
\(569\) −15.2488 −0.639264 −0.319632 0.947542i \(-0.603559\pi\)
−0.319632 + 0.947542i \(0.603559\pi\)
\(570\) 1.20721 0.0505646
\(571\) −6.07235 −0.254120 −0.127060 0.991895i \(-0.540554\pi\)
−0.127060 + 0.991895i \(0.540554\pi\)
\(572\) 13.0542 0.545824
\(573\) −3.84757 −0.160735
\(574\) 15.4417 0.644524
\(575\) 2.07800 0.0866585
\(576\) −26.4502 −1.10209
\(577\) −27.8497 −1.15940 −0.579699 0.814831i \(-0.696830\pi\)
−0.579699 + 0.814831i \(0.696830\pi\)
\(578\) −14.5154 −0.603760
\(579\) −0.914997 −0.0380260
\(580\) −3.64165 −0.151211
\(581\) 2.60638 0.108131
\(582\) 2.11274 0.0875758
\(583\) 14.0195 0.580628
\(584\) −29.5602 −1.22321
\(585\) 15.6734 0.648015
\(586\) −6.55696 −0.270866
\(587\) −8.50024 −0.350842 −0.175421 0.984493i \(-0.556129\pi\)
−0.175421 + 0.984493i \(0.556129\pi\)
\(588\) −0.0154839 −0.000638546 0
\(589\) 47.0639 1.93923
\(590\) −16.1416 −0.664538
\(591\) 2.11434 0.0869722
\(592\) 31.8427 1.30873
\(593\) −17.0379 −0.699665 −0.349832 0.936812i \(-0.613761\pi\)
−0.349832 + 0.936812i \(0.613761\pi\)
\(594\) −6.81017 −0.279425
\(595\) −6.02373 −0.246949
\(596\) 3.68137 0.150795
\(597\) −2.67561 −0.109505
\(598\) 13.6426 0.557888
\(599\) −28.8532 −1.17891 −0.589455 0.807801i \(-0.700657\pi\)
−0.589455 + 0.807801i \(0.700657\pi\)
\(600\) 0.507675 0.0207257
\(601\) −32.0017 −1.30538 −0.652689 0.757626i \(-0.726359\pi\)
−0.652689 + 0.757626i \(0.726359\pi\)
\(602\) 4.77760 0.194720
\(603\) 12.1801 0.496010
\(604\) 0.958796 0.0390129
\(605\) −19.2799 −0.783838
\(606\) −2.58705 −0.105092
\(607\) −18.7927 −0.762773 −0.381386 0.924416i \(-0.624553\pi\)
−0.381386 + 0.924416i \(0.624553\pi\)
\(608\) 14.5204 0.588878
\(609\) −3.51149 −0.142293
\(610\) 10.3677 0.419778
\(611\) −48.5831 −1.96546
\(612\) −3.09046 −0.124924
\(613\) −32.8074 −1.32508 −0.662539 0.749028i \(-0.730521\pi\)
−0.662539 + 0.749028i \(0.730521\pi\)
\(614\) −18.8046 −0.758892
\(615\) −0.792015 −0.0319371
\(616\) −43.7464 −1.76259
\(617\) −18.5402 −0.746402 −0.373201 0.927750i \(-0.621740\pi\)
−0.373201 + 0.927750i \(0.621740\pi\)
\(618\) 0.225680 0.00907819
\(619\) −15.5977 −0.626926 −0.313463 0.949600i \(-0.601489\pi\)
−0.313463 + 0.949600i \(0.601489\pi\)
\(620\) 3.63451 0.145965
\(621\) 2.06559 0.0828893
\(622\) −6.64023 −0.266249
\(623\) 19.4304 0.778463
\(624\) 2.54333 0.101814
\(625\) 1.00000 0.0400000
\(626\) −5.71621 −0.228466
\(627\) 5.33555 0.213081
\(628\) 6.99445 0.279109
\(629\) 25.3960 1.01260
\(630\) −9.64521 −0.384274
\(631\) 26.4361 1.05240 0.526202 0.850359i \(-0.323615\pi\)
0.526202 + 0.850359i \(0.323615\pi\)
\(632\) 24.3836 0.969927
\(633\) −0.611830 −0.0243181
\(634\) 34.7700 1.38089
\(635\) −1.29708 −0.0514732
\(636\) −0.190772 −0.00756462
\(637\) −1.09041 −0.0432038
\(638\) 55.4568 2.19556
\(639\) −4.02652 −0.159287
\(640\) −6.09447 −0.240905
\(641\) 24.2326 0.957129 0.478565 0.878052i \(-0.341157\pi\)
0.478565 + 0.878052i \(0.341157\pi\)
\(642\) 1.44277 0.0569417
\(643\) 8.86847 0.349738 0.174869 0.984592i \(-0.444050\pi\)
0.174869 + 0.984592i \(0.444050\pi\)
\(644\) 2.43660 0.0960157
\(645\) −0.245046 −0.00964869
\(646\) −16.7631 −0.659535
\(647\) 3.91936 0.154086 0.0770429 0.997028i \(-0.475452\pi\)
0.0770429 + 0.997028i \(0.475452\pi\)
\(648\) −26.6936 −1.04862
\(649\) −71.3413 −2.80039
\(650\) 6.56527 0.257511
\(651\) 3.50460 0.137356
\(652\) 9.38373 0.367495
\(653\) 23.4455 0.917494 0.458747 0.888567i \(-0.348298\pi\)
0.458747 + 0.888567i \(0.348298\pi\)
\(654\) −0.233646 −0.00913630
\(655\) 4.44343 0.173619
\(656\) 13.7895 0.538389
\(657\) −28.8053 −1.12380
\(658\) 29.8974 1.16552
\(659\) 17.7838 0.692758 0.346379 0.938095i \(-0.387411\pi\)
0.346379 + 0.938095i \(0.387411\pi\)
\(660\) 0.412038 0.0160386
\(661\) −12.9871 −0.505138 −0.252569 0.967579i \(-0.581276\pi\)
−0.252569 + 0.967579i \(0.581276\pi\)
\(662\) 4.07772 0.158485
\(663\) 2.02841 0.0787771
\(664\) 3.05020 0.118371
\(665\) 15.1839 0.588804
\(666\) 40.6641 1.57570
\(667\) −16.8206 −0.651296
\(668\) −4.15416 −0.160729
\(669\) 3.39434 0.131233
\(670\) 5.10198 0.197107
\(671\) 45.8226 1.76896
\(672\) 1.08126 0.0417104
\(673\) −20.0636 −0.773394 −0.386697 0.922207i \(-0.626384\pi\)
−0.386697 + 0.922207i \(0.626384\pi\)
\(674\) −22.2899 −0.858573
\(675\) 0.994030 0.0382602
\(676\) −6.66111 −0.256197
\(677\) −20.0807 −0.771764 −0.385882 0.922548i \(-0.626103\pi\)
−0.385882 + 0.922548i \(0.626103\pi\)
\(678\) 2.13741 0.0820866
\(679\) 26.5732 1.01978
\(680\) −7.04945 −0.270334
\(681\) −0.980024 −0.0375546
\(682\) −55.3480 −2.11939
\(683\) 32.8832 1.25824 0.629121 0.777307i \(-0.283415\pi\)
0.629121 + 0.777307i \(0.283415\pi\)
\(684\) 7.79003 0.297859
\(685\) −10.1106 −0.386305
\(686\) 23.3863 0.892892
\(687\) 1.27188 0.0485254
\(688\) 4.26642 0.162656
\(689\) −13.4346 −0.511819
\(690\) 0.430611 0.0163931
\(691\) 5.40542 0.205632 0.102816 0.994700i \(-0.467215\pi\)
0.102816 + 0.994700i \(0.467215\pi\)
\(692\) 5.86773 0.223058
\(693\) −42.6292 −1.61935
\(694\) −16.3495 −0.620619
\(695\) −16.7621 −0.635821
\(696\) −4.10943 −0.155768
\(697\) 10.9977 0.416569
\(698\) 20.3587 0.770587
\(699\) 2.05263 0.0776377
\(700\) 1.17257 0.0443191
\(701\) −48.6086 −1.83592 −0.917960 0.396672i \(-0.870165\pi\)
−0.917960 + 0.396672i \(0.870165\pi\)
\(702\) 6.52608 0.246311
\(703\) −64.0150 −2.41437
\(704\) −48.9681 −1.84555
\(705\) −1.53346 −0.0577534
\(706\) −19.7543 −0.743461
\(707\) −32.5388 −1.22375
\(708\) 0.970788 0.0364844
\(709\) −10.4181 −0.391260 −0.195630 0.980678i \(-0.562675\pi\)
−0.195630 + 0.980678i \(0.562675\pi\)
\(710\) −1.68663 −0.0632980
\(711\) 23.7609 0.891102
\(712\) 22.7390 0.852182
\(713\) 16.7876 0.628700
\(714\) −1.24826 −0.0467150
\(715\) 29.0167 1.08516
\(716\) 0.314980 0.0117714
\(717\) 2.30162 0.0859557
\(718\) −36.2182 −1.35165
\(719\) −25.8556 −0.964252 −0.482126 0.876102i \(-0.660135\pi\)
−0.482126 + 0.876102i \(0.660135\pi\)
\(720\) −8.61322 −0.320996
\(721\) 2.83852 0.105712
\(722\) 18.5986 0.692167
\(723\) 3.88982 0.144664
\(724\) −8.87348 −0.329780
\(725\) −8.09462 −0.300627
\(726\) −3.99525 −0.148278
\(727\) −36.0203 −1.33592 −0.667960 0.744197i \(-0.732832\pi\)
−0.667960 + 0.744197i \(0.732832\pi\)
\(728\) 41.9215 1.55371
\(729\) −25.5156 −0.945021
\(730\) −12.0659 −0.446581
\(731\) 3.40266 0.125852
\(732\) −0.623538 −0.0230466
\(733\) 47.2287 1.74443 0.872216 0.489121i \(-0.162682\pi\)
0.872216 + 0.489121i \(0.162682\pi\)
\(734\) −14.0364 −0.518094
\(735\) −0.0344174 −0.00126951
\(736\) 5.17938 0.190915
\(737\) 22.5493 0.830616
\(738\) 17.6096 0.648218
\(739\) 15.3655 0.565228 0.282614 0.959234i \(-0.408798\pi\)
0.282614 + 0.959234i \(0.408798\pi\)
\(740\) −4.94356 −0.181729
\(741\) −5.11297 −0.187830
\(742\) 8.26751 0.303510
\(743\) 2.88804 0.105952 0.0529760 0.998596i \(-0.483129\pi\)
0.0529760 + 0.998596i \(0.483129\pi\)
\(744\) 4.10137 0.150363
\(745\) 8.18290 0.299798
\(746\) 43.7219 1.60077
\(747\) 2.97230 0.108751
\(748\) −5.72146 −0.209197
\(749\) 18.1466 0.663063
\(750\) 0.207224 0.00756674
\(751\) −35.4009 −1.29180 −0.645899 0.763423i \(-0.723517\pi\)
−0.645899 + 0.763423i \(0.723517\pi\)
\(752\) 26.6985 0.973595
\(753\) −1.26691 −0.0461688
\(754\) −53.1434 −1.93537
\(755\) 2.13120 0.0775622
\(756\) 1.16557 0.0423915
\(757\) −32.0281 −1.16408 −0.582041 0.813159i \(-0.697746\pi\)
−0.582041 + 0.813159i \(0.697746\pi\)
\(758\) 27.4571 0.997286
\(759\) 1.90318 0.0690811
\(760\) 17.7694 0.644563
\(761\) 37.2950 1.35194 0.675972 0.736927i \(-0.263724\pi\)
0.675972 + 0.736927i \(0.263724\pi\)
\(762\) −0.268786 −0.00973711
\(763\) −2.93871 −0.106389
\(764\) −10.3999 −0.376257
\(765\) −6.86942 −0.248364
\(766\) 21.7881 0.787237
\(767\) 68.3652 2.46852
\(768\) 1.69935 0.0613199
\(769\) 41.1722 1.48471 0.742354 0.670008i \(-0.233709\pi\)
0.742354 + 0.670008i \(0.233709\pi\)
\(770\) −17.8565 −0.643504
\(771\) 1.17274 0.0422352
\(772\) −2.47323 −0.0890134
\(773\) −7.60205 −0.273427 −0.136713 0.990611i \(-0.543654\pi\)
−0.136713 + 0.990611i \(0.543654\pi\)
\(774\) 5.44834 0.195837
\(775\) 8.07873 0.290197
\(776\) 31.0981 1.11636
\(777\) −4.76686 −0.171010
\(778\) −11.1150 −0.398492
\(779\) −27.7217 −0.993233
\(780\) −0.394849 −0.0141379
\(781\) −7.45443 −0.266740
\(782\) −5.97936 −0.213821
\(783\) −8.04629 −0.287551
\(784\) 0.599230 0.0214011
\(785\) 15.5472 0.554902
\(786\) 0.920785 0.0328433
\(787\) 32.1274 1.14522 0.572610 0.819828i \(-0.305931\pi\)
0.572610 + 0.819828i \(0.305931\pi\)
\(788\) 5.71503 0.203590
\(789\) −4.46631 −0.159005
\(790\) 9.95294 0.354110
\(791\) 26.8835 0.955866
\(792\) −49.8881 −1.77270
\(793\) −43.9110 −1.55933
\(794\) 15.1783 0.538657
\(795\) −0.424046 −0.0150394
\(796\) −7.23215 −0.256337
\(797\) −10.4340 −0.369590 −0.184795 0.982777i \(-0.559162\pi\)
−0.184795 + 0.982777i \(0.559162\pi\)
\(798\) 3.14646 0.111383
\(799\) 21.2933 0.753301
\(800\) 2.49249 0.0881228
\(801\) 22.1583 0.782926
\(802\) −29.9826 −1.05872
\(803\) −53.3282 −1.88191
\(804\) −0.306844 −0.0108215
\(805\) 5.41605 0.190891
\(806\) 53.0391 1.86822
\(807\) −3.17300 −0.111695
\(808\) −38.0796 −1.33963
\(809\) −6.02723 −0.211906 −0.105953 0.994371i \(-0.533789\pi\)
−0.105953 + 0.994371i \(0.533789\pi\)
\(810\) −10.8959 −0.382842
\(811\) 41.5723 1.45980 0.729900 0.683554i \(-0.239567\pi\)
0.729900 + 0.683554i \(0.239567\pi\)
\(812\) −9.49153 −0.333088
\(813\) −2.67408 −0.0937839
\(814\) 75.2829 2.63866
\(815\) 20.8580 0.730625
\(816\) −1.11470 −0.0390224
\(817\) −8.57698 −0.300071
\(818\) 24.7989 0.867072
\(819\) 40.8508 1.42744
\(820\) −2.14081 −0.0747603
\(821\) 29.8181 1.04066 0.520330 0.853965i \(-0.325809\pi\)
0.520330 + 0.853965i \(0.325809\pi\)
\(822\) −2.09515 −0.0730767
\(823\) −17.6053 −0.613682 −0.306841 0.951761i \(-0.599272\pi\)
−0.306841 + 0.951761i \(0.599272\pi\)
\(824\) 3.32186 0.115723
\(825\) 0.915872 0.0318866
\(826\) −42.0711 −1.46384
\(827\) 4.09065 0.142246 0.0711230 0.997468i \(-0.477342\pi\)
0.0711230 + 0.997468i \(0.477342\pi\)
\(828\) 2.77869 0.0965661
\(829\) −11.4055 −0.396130 −0.198065 0.980189i \(-0.563466\pi\)
−0.198065 + 0.980189i \(0.563466\pi\)
\(830\) 1.24504 0.0432158
\(831\) −1.47674 −0.0512274
\(832\) 46.9253 1.62684
\(833\) 0.477912 0.0165587
\(834\) −3.47350 −0.120277
\(835\) −9.23380 −0.319549
\(836\) 14.4219 0.498793
\(837\) 8.03050 0.277575
\(838\) 29.5254 1.01994
\(839\) 34.1865 1.18025 0.590124 0.807313i \(-0.299079\pi\)
0.590124 + 0.807313i \(0.299079\pi\)
\(840\) 1.32319 0.0456545
\(841\) 36.5228 1.25941
\(842\) 36.0755 1.24324
\(843\) 5.08335 0.175080
\(844\) −1.65377 −0.0569251
\(845\) −14.8062 −0.509350
\(846\) 34.0948 1.17220
\(847\) −50.2507 −1.72663
\(848\) 7.38292 0.253531
\(849\) 2.73415 0.0938358
\(850\) −2.87746 −0.0986961
\(851\) −22.8340 −0.782740
\(852\) 0.101437 0.00347518
\(853\) 19.2888 0.660435 0.330217 0.943905i \(-0.392878\pi\)
0.330217 + 0.943905i \(0.392878\pi\)
\(854\) 27.0223 0.924684
\(855\) 17.3156 0.592180
\(856\) 21.2366 0.725854
\(857\) −37.7814 −1.29059 −0.645293 0.763935i \(-0.723265\pi\)
−0.645293 + 0.763935i \(0.723265\pi\)
\(858\) 6.01295 0.205279
\(859\) 0.577130 0.0196914 0.00984570 0.999952i \(-0.496866\pi\)
0.00984570 + 0.999952i \(0.496866\pi\)
\(860\) −0.662358 −0.0225862
\(861\) −2.06429 −0.0703509
\(862\) −23.9911 −0.817139
\(863\) 21.0115 0.715241 0.357621 0.933867i \(-0.383588\pi\)
0.357621 + 0.933867i \(0.383588\pi\)
\(864\) 2.47761 0.0842899
\(865\) 13.0427 0.443465
\(866\) 3.68773 0.125314
\(867\) 1.94046 0.0659014
\(868\) 9.47291 0.321531
\(869\) 43.9893 1.49223
\(870\) −1.67740 −0.0568691
\(871\) −21.6087 −0.732182
\(872\) −3.43912 −0.116463
\(873\) 30.3039 1.02563
\(874\) 15.0720 0.509818
\(875\) 2.60638 0.0881117
\(876\) 0.725671 0.0245182
\(877\) −36.7544 −1.24111 −0.620554 0.784163i \(-0.713092\pi\)
−0.620554 + 0.784163i \(0.713092\pi\)
\(878\) −28.2977 −0.955003
\(879\) 0.876554 0.0295654
\(880\) −15.9459 −0.537537
\(881\) 6.85472 0.230941 0.115471 0.993311i \(-0.463162\pi\)
0.115471 + 0.993311i \(0.463162\pi\)
\(882\) 0.765234 0.0257668
\(883\) −22.2929 −0.750214 −0.375107 0.926981i \(-0.622394\pi\)
−0.375107 + 0.926981i \(0.622394\pi\)
\(884\) 5.48279 0.184406
\(885\) 2.15785 0.0725354
\(886\) −1.34234 −0.0450967
\(887\) 44.7244 1.50170 0.750849 0.660473i \(-0.229644\pi\)
0.750849 + 0.660473i \(0.229644\pi\)
\(888\) −5.57857 −0.187205
\(889\) −3.38069 −0.113385
\(890\) 9.28167 0.311122
\(891\) −48.1567 −1.61331
\(892\) 9.17488 0.307198
\(893\) −53.6733 −1.79611
\(894\) 1.69569 0.0567124
\(895\) 0.700134 0.0234029
\(896\) −15.8845 −0.530664
\(897\) −1.82379 −0.0608944
\(898\) −22.9356 −0.765371
\(899\) −65.3942 −2.18102
\(900\) 1.33719 0.0445732
\(901\) 5.88821 0.196165
\(902\) 32.6012 1.08550
\(903\) −0.638684 −0.0212541
\(904\) 31.4612 1.04638
\(905\) −19.7238 −0.655643
\(906\) 0.441635 0.0146723
\(907\) 25.3486 0.841686 0.420843 0.907134i \(-0.361734\pi\)
0.420843 + 0.907134i \(0.361734\pi\)
\(908\) −2.64900 −0.0879100
\(909\) −37.1071 −1.23076
\(910\) 17.1116 0.567244
\(911\) −9.88777 −0.327596 −0.163798 0.986494i \(-0.552375\pi\)
−0.163798 + 0.986494i \(0.552375\pi\)
\(912\) 2.80980 0.0930417
\(913\) 5.50271 0.182113
\(914\) 51.0807 1.68960
\(915\) −1.38599 −0.0458195
\(916\) 3.43789 0.113591
\(917\) 11.5813 0.382447
\(918\) −2.86028 −0.0944034
\(919\) −44.6432 −1.47264 −0.736321 0.676632i \(-0.763439\pi\)
−0.736321 + 0.676632i \(0.763439\pi\)
\(920\) 6.33830 0.208968
\(921\) 2.51385 0.0828343
\(922\) 35.2039 1.15938
\(923\) 7.14345 0.235130
\(924\) 1.07393 0.0353296
\(925\) −10.9885 −0.361299
\(926\) −37.9646 −1.24759
\(927\) 3.23702 0.106318
\(928\) −20.1757 −0.662301
\(929\) −26.7919 −0.879013 −0.439507 0.898239i \(-0.644847\pi\)
−0.439507 + 0.898239i \(0.644847\pi\)
\(930\) 1.67411 0.0548961
\(931\) −1.20466 −0.0394811
\(932\) 5.54825 0.181739
\(933\) 0.887685 0.0290615
\(934\) 26.1708 0.856334
\(935\) −12.7176 −0.415910
\(936\) 47.8069 1.56262
\(937\) 11.5270 0.376571 0.188285 0.982114i \(-0.439707\pi\)
0.188285 + 0.982114i \(0.439707\pi\)
\(938\) 13.2977 0.434185
\(939\) 0.764159 0.0249374
\(940\) −4.14492 −0.135193
\(941\) −7.24371 −0.236138 −0.118069 0.993005i \(-0.537670\pi\)
−0.118069 + 0.993005i \(0.537670\pi\)
\(942\) 3.22174 0.104970
\(943\) −9.88827 −0.322006
\(944\) −37.5696 −1.22279
\(945\) 2.59082 0.0842793
\(946\) 10.0867 0.327947
\(947\) −2.92315 −0.0949898 −0.0474949 0.998871i \(-0.515124\pi\)
−0.0474949 + 0.998871i \(0.515124\pi\)
\(948\) −0.598591 −0.0194413
\(949\) 51.1035 1.65889
\(950\) 7.25314 0.235323
\(951\) −4.64816 −0.150727
\(952\) −18.3736 −0.595490
\(953\) −41.8295 −1.35499 −0.677494 0.735528i \(-0.736934\pi\)
−0.677494 + 0.735528i \(0.736934\pi\)
\(954\) 9.42821 0.305250
\(955\) −23.1169 −0.748044
\(956\) 6.22127 0.201210
\(957\) −7.41363 −0.239649
\(958\) 17.7065 0.572071
\(959\) −26.3519 −0.850949
\(960\) 1.48113 0.0478034
\(961\) 34.2659 1.10535
\(962\) −72.1423 −2.32596
\(963\) 20.6943 0.666864
\(964\) 10.5142 0.338638
\(965\) −5.49746 −0.176969
\(966\) 1.12233 0.0361105
\(967\) 39.4218 1.26772 0.633859 0.773448i \(-0.281470\pi\)
0.633859 + 0.773448i \(0.281470\pi\)
\(968\) −58.8074 −1.89014
\(969\) 2.24094 0.0719893
\(970\) 12.6937 0.407570
\(971\) 21.9651 0.704892 0.352446 0.935832i \(-0.385350\pi\)
0.352446 + 0.935832i \(0.385350\pi\)
\(972\) 1.99690 0.0640506
\(973\) −43.6883 −1.40058
\(974\) 24.9494 0.799430
\(975\) −0.877665 −0.0281078
\(976\) 24.1310 0.772415
\(977\) 34.3780 1.09985 0.549924 0.835214i \(-0.314657\pi\)
0.549924 + 0.835214i \(0.314657\pi\)
\(978\) 4.32228 0.138211
\(979\) 41.0224 1.31108
\(980\) −0.0930299 −0.00297173
\(981\) −3.35129 −0.106998
\(982\) −21.3634 −0.681733
\(983\) 37.3380 1.19090 0.595448 0.803394i \(-0.296975\pi\)
0.595448 + 0.803394i \(0.296975\pi\)
\(984\) −2.41580 −0.0770129
\(985\) 12.7033 0.404761
\(986\) 23.2920 0.741767
\(987\) −3.99678 −0.127219
\(988\) −13.8203 −0.439683
\(989\) −3.05939 −0.0972831
\(990\) −20.3634 −0.647193
\(991\) −23.8047 −0.756180 −0.378090 0.925769i \(-0.623419\pi\)
−0.378090 + 0.925769i \(0.623419\pi\)
\(992\) 20.1361 0.639323
\(993\) −0.545122 −0.0172989
\(994\) −4.39599 −0.139432
\(995\) −16.0755 −0.509628
\(996\) −0.0748791 −0.00237263
\(997\) 20.3102 0.643232 0.321616 0.946870i \(-0.395774\pi\)
0.321616 + 0.946870i \(0.395774\pi\)
\(998\) −26.8245 −0.849114
\(999\) −10.9229 −0.345584
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 415.2.a.d.1.6 7
3.2 odd 2 3735.2.a.o.1.2 7
4.3 odd 2 6640.2.a.be.1.4 7
5.4 even 2 2075.2.a.h.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.2.a.d.1.6 7 1.1 even 1 trivial
2075.2.a.h.1.2 7 5.4 even 2
3735.2.a.o.1.2 7 3.2 odd 2
6640.2.a.be.1.4 7 4.3 odd 2