Properties

Label 410.2.g
Level $410$
Weight $2$
Character orbit 410.g
Rep. character $\chi_{410}(9,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $44$
Newform subspaces $6$
Sturm bound $126$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 410 = 2 \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 410.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 205 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(126\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(410, [\chi])\).

Total New Old
Modular forms 132 44 88
Cusp forms 116 44 72
Eisenstein series 16 0 16

Trace form

\( 44 q + 44 q^{4} - 4 q^{6} - 4 q^{11} + 20 q^{15} + 44 q^{16} - 20 q^{19} - 4 q^{24} - 12 q^{25} - 8 q^{26} + 24 q^{29} + 8 q^{30} - 16 q^{31} - 20 q^{34} - 12 q^{35} + 8 q^{41} - 4 q^{44} + 4 q^{45} - 16 q^{51}+ \cdots - 100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(410, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
410.2.g.a 410.g 205.j $2$ $3.274$ \(\Q(\sqrt{-1}) \) None 410.2.g.a \(-2\) \(-2\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q-q^{2}+(-i-1)q^{3}+q^{4}+(2 i-1)q^{5}+\cdots\)
410.2.g.b 410.g 205.j $2$ $3.274$ \(\Q(\sqrt{-1}) \) None 410.2.g.b \(-2\) \(4\) \(4\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q-q^{2}+(2 i+2)q^{3}+q^{4}+(i+2)q^{5}+\cdots\)
410.2.g.c 410.g 205.j $2$ $3.274$ \(\Q(\sqrt{-1}) \) None 410.2.g.b \(2\) \(-4\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+q^{2}+(-2 i-2)q^{3}+q^{4}+(i-2)q^{5}+\cdots\)
410.2.g.d 410.g 205.j $2$ $3.274$ \(\Q(\sqrt{-1}) \) None 410.2.g.a \(2\) \(2\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q+q^{2}+(i+1)q^{3}+q^{4}+(2 i+1)q^{5}+\cdots\)
410.2.g.e 410.g 205.j $18$ $3.274$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 410.2.g.e \(-18\) \(0\) \(-2\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{14}q^{5}-\beta _{1}q^{6}+\cdots\)
410.2.g.f 410.g 205.j $18$ $3.274$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 410.2.g.e \(18\) \(0\) \(2\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{9}q^{5}-\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(410, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(410, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(205, [\chi])\)\(^{\oplus 2}\)