Defining parameters
Level: | \( N \) | \(=\) | \( 410 = 2 \cdot 5 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 410.g (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 205 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(126\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(410, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 132 | 44 | 88 |
Cusp forms | 116 | 44 | 72 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(410, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
410.2.g.a | $2$ | $3.274$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(2\) | \(q-q^{2}+(-i-1)q^{3}+q^{4}+(2 i-1)q^{5}+\cdots\) |
410.2.g.b | $2$ | $3.274$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(4\) | \(4\) | \(4\) | \(q-q^{2}+(2 i+2)q^{3}+q^{4}+(i+2)q^{5}+\cdots\) |
410.2.g.c | $2$ | $3.274$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(-4\) | \(-4\) | \(-4\) | \(q+q^{2}+(-2 i-2)q^{3}+q^{4}+(i-2)q^{5}+\cdots\) |
410.2.g.d | $2$ | $3.274$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(2\) | \(2\) | \(-2\) | \(q+q^{2}+(i+1)q^{3}+q^{4}+(2 i+1)q^{5}+\cdots\) |
410.2.g.e | $18$ | $3.274$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-18\) | \(0\) | \(-2\) | \(-6\) | \(q-q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{14}q^{5}-\beta _{1}q^{6}+\cdots\) |
410.2.g.f | $18$ | $3.274$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(18\) | \(0\) | \(2\) | \(6\) | \(q+q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{9}q^{5}-\beta _{1}q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(410, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(410, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(205, [\chi])\)\(^{\oplus 2}\)