Properties

Label 409.2.m
Level $409$
Weight $2$
Character orbit 409.m
Rep. character $\chi_{409}(4,\cdot)$
Character field $\Q(\zeta_{102})$
Dimension $1056$
Newform subspaces $1$
Sturm bound $68$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.m (of order \(102\) and degree \(32\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 409 \)
Character field: \(\Q(\zeta_{102})\)
Newform subspaces: \( 1 \)
Sturm bound: \(68\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(409, [\chi])\).

Total New Old
Modular forms 1120 1120 0
Cusp forms 1056 1056 0
Eisenstein series 64 64 0

Trace form

\( 1056 q - 33 q^{2} - 31 q^{3} + 29 q^{4} - 22 q^{5} - 44 q^{6} - 57 q^{7} - 22 q^{8} + 2 q^{9} - 30 q^{10} + 17 q^{11} + 67 q^{12} - 34 q^{13} - 68 q^{14} - 32 q^{15} + 21 q^{16} - 27 q^{17} + 22 q^{18}+ \cdots - 229 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(409, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
409.2.m.a 409.m 409.m $1056$ $3.266$ None 409.2.m.a \(-33\) \(-31\) \(-22\) \(-57\) $\mathrm{SU}(2)[C_{102}]$