Properties

Label 408.2.bl
Level $408$
Weight $2$
Character orbit 408.bl
Rep. character $\chi_{408}(91,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $288$
Newform subspaces $1$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 408 = 2^{3} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 408.bl (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 1 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(408, [\chi])\).

Total New Old
Modular forms 608 288 320
Cusp forms 544 288 256
Eisenstein series 64 0 64

Trace form

\( 288 q - 16 q^{24} + 64 q^{26} - 48 q^{28} + 64 q^{30} - 80 q^{32} + 16 q^{34} - 16 q^{36} + 80 q^{38} - 64 q^{40} + 48 q^{42} - 64 q^{44} + 16 q^{46} - 80 q^{56} - 112 q^{58} - 112 q^{62} - 96 q^{64} - 160 q^{65}+ \cdots - 96 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(408, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
408.2.bl.a 408.bl 136.s $288$ $3.258$ None 408.2.bl.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$

Decomposition of \(S_{2}^{\mathrm{old}}(408, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(408, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 2}\)