Properties

Label 408.2.bc
Level $408$
Weight $2$
Character orbit 408.bc
Rep. character $\chi_{408}(229,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $144$
Newform subspaces $1$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 408 = 2^{3} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 408.bc (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(408, [\chi])\).

Total New Old
Modular forms 304 144 160
Cusp forms 272 144 128
Eisenstein series 32 0 32

Trace form

\( 144 q + 8 q^{6} - 32 q^{14} - 24 q^{22} + 8 q^{24} - 16 q^{25} - 32 q^{26} + 24 q^{28} + 80 q^{32} - 8 q^{34} + 8 q^{36} + 88 q^{40} - 16 q^{41} - 24 q^{42} + 32 q^{44} - 16 q^{46} - 8 q^{54} - 96 q^{56}+ \cdots + 80 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(408, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
408.2.bc.a 408.bc 136.o $144$ $3.258$ None 408.2.bc.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(408, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(408, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 2}\)