Properties

Label 406.2.e
Level $406$
Weight $2$
Character orbit 406.e
Rep. character $\chi_{406}(233,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $40$
Newform subspaces $4$
Sturm bound $120$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 406 = 2 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 406.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(120\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(406, [\chi])\).

Total New Old
Modular forms 128 40 88
Cusp forms 112 40 72
Eisenstein series 16 0 16

Trace form

\( 40 q - 20 q^{4} - 4 q^{5} - 4 q^{7} - 24 q^{9} + 4 q^{10} - 8 q^{11} + 8 q^{13} + 4 q^{14} - 16 q^{15} - 20 q^{16} + 16 q^{17} + 8 q^{20} + 16 q^{21} - 16 q^{22} + 4 q^{23} - 24 q^{25} + 24 q^{27} - 4 q^{28}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(406, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
406.2.e.a 406.e 7.c $10$ $3.242$ 10.0.\(\cdots\).1 None 406.2.e.a \(-5\) \(-3\) \(-7\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{4})q^{2}+(-\beta _{3}-\beta _{4})q^{3}-\beta _{4}q^{4}+\cdots\)
406.2.e.b 406.e 7.c $10$ $3.242$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 406.2.e.b \(-5\) \(3\) \(7\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{6})q^{2}+(-\beta _{1}-\beta _{6})q^{3}+\beta _{6}q^{4}+\cdots\)
406.2.e.c 406.e 7.c $10$ $3.242$ 10.0.\(\cdots\).1 None 406.2.e.c \(5\) \(-3\) \(-5\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{6}q^{2}+(-\beta _{1}-\beta _{7})q^{3}+(-1+\beta _{6}+\cdots)q^{4}+\cdots\)
406.2.e.d 406.e 7.c $10$ $3.242$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 406.2.e.d \(5\) \(3\) \(1\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{6}q^{2}+(1-\beta _{5}+\beta _{6})q^{3}+(-1-\beta _{6}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(406, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(406, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(203, [\chi])\)\(^{\oplus 2}\)