Defining parameters
| Level: | \( N \) | \(=\) | \( 40320 = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 40320.bj (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Sturm bound: | \(18432\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(40320, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 18560 | 3072 | 15488 |
| Cusp forms | 18304 | 3072 | 15232 |
| Eisenstein series | 256 | 0 | 256 |
Decomposition of \(S_{2}^{\mathrm{new}}(40320, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(40320, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(40320, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(630, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1260, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2016, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2520, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4032, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(5040, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(8064, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(10080, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(20160, [\chi])\)\(^{\oplus 2}\)