Properties

Label 4032.3.dc
Level $4032$
Weight $3$
Character orbit 4032.dc
Rep. character $\chi_{4032}(2753,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $256$
Sturm bound $2304$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 4032.dc (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(2304\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(4032, [\chi])\).

Total New Old
Modular forms 3168 256 2912
Cusp forms 2976 256 2720
Eisenstein series 192 0 192

Decomposition of \(S_{3}^{\mathrm{new}}(4032, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(4032, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(4032, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 14}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1344, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(2016, [\chi])\)\(^{\oplus 2}\)