Defining parameters
Level: | \( N \) | \(=\) | \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 4032.cd (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(2304\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(4032, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3168 | 324 | 2844 |
Cusp forms | 2976 | 316 | 2660 |
Eisenstein series | 192 | 8 | 184 |
Decomposition of \(S_{3}^{\mathrm{new}}(4032, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{3}^{\mathrm{old}}(4032, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(4032, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 15}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1344, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(2016, [\chi])\)\(^{\oplus 2}\)