Properties

Label 403.2.bz
Level $403$
Weight $2$
Character orbit 403.bz
Rep. character $\chi_{403}(38,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $288$
Newform subspaces $1$
Sturm bound $74$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.bz (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 403 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(74\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(403, [\chi])\).

Total New Old
Modular forms 320 320 0
Cusp forms 288 288 0
Eisenstein series 32 32 0

Trace form

\( 288 q - 16 q^{3} + 60 q^{4} + 16 q^{9} - 42 q^{10} - 58 q^{12} - 7 q^{13} - 26 q^{14} - 84 q^{16} - 30 q^{17} + 44 q^{22} + 44 q^{23} + 124 q^{25} - 21 q^{26} + 2 q^{27} - 44 q^{29} - 204 q^{30} - 34 q^{35}+ \cdots - 150 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(403, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
403.2.bz.a 403.bz 403.az $288$ $3.218$ None 403.2.bz.a \(0\) \(-16\) \(0\) \(0\) $\mathrm{SU}(2)[C_{30}]$