Properties

Label 403.2.bk
Level $403$
Weight $2$
Character orbit 403.bk
Rep. character $\chi_{403}(9,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $280$
Newform subspaces $1$
Sturm bound $74$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.bk (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 403 \)
Character field: \(\Q(\zeta_{15})\)
Newform subspaces: \( 1 \)
Sturm bound: \(74\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(403, [\chi])\).

Total New Old
Modular forms 312 312 0
Cusp forms 280 280 0
Eisenstein series 32 32 0

Trace form

\( 280 q - 3 q^{2} - 9 q^{3} + 29 q^{4} - 8 q^{5} - 10 q^{6} - 13 q^{7} - 29 q^{8} + 24 q^{9} - 9 q^{10} - 6 q^{11} - 50 q^{12} - 6 q^{13} - 21 q^{15} + 23 q^{16} + 3 q^{17} - 15 q^{18} - 9 q^{19} + 60 q^{20}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(403, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
403.2.bk.a 403.bk 403.ak $280$ $3.218$ None 403.2.bj.a \(-3\) \(-9\) \(-8\) \(-13\) $\mathrm{SU}(2)[C_{15}]$