Properties

Label 403.1.p
Level $403$
Weight $1$
Character orbit 403.p
Rep. character $\chi_{403}(61,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $37$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 403.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 403 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(37\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(403, [\chi])\).

Total New Old
Modular forms 8 8 0
Cusp forms 4 4 0
Eisenstein series 4 4 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 4 0 0

Trace form

\( 4 q - 2 q^{2} + 2 q^{7} - 4 q^{8} - 4 q^{14} + 2 q^{16} + 2 q^{19} - 4 q^{25} - 2 q^{33} - 4 q^{38} + 2 q^{39} + 2 q^{41} + 2 q^{50} + 4 q^{51} - 2 q^{56} + 2 q^{59} + 4 q^{64} + 4 q^{66} + 2 q^{67} - 2 q^{69}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(403, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
403.1.p.a 403.p 403.p $4$ $0.201$ \(\Q(\zeta_{12})\) $A_{4}$ None None 403.1.p.a \(-2\) \(0\) \(0\) \(2\) \(q-\zeta_{12}^{2}q^{2}+\zeta_{12}^{5}q^{3}+\zeta_{12}q^{6}-\zeta_{12}^{4}q^{7}+\cdots\)