Properties

Label 4002.2.a.bj.1.4
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 26x^{6} + 4x^{5} + 209x^{4} + 113x^{3} - 436x^{2} - 360x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.869754\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -0.869754 q^{5} -1.00000 q^{6} +3.97135 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -0.869754 q^{5} -1.00000 q^{6} +3.97135 q^{7} +1.00000 q^{8} +1.00000 q^{9} -0.869754 q^{10} +3.41188 q^{11} -1.00000 q^{12} +3.88600 q^{13} +3.97135 q^{14} +0.869754 q^{15} +1.00000 q^{16} -1.10357 q^{17} +1.00000 q^{18} +3.97135 q^{19} -0.869754 q^{20} -3.97135 q^{21} +3.41188 q^{22} +1.00000 q^{23} -1.00000 q^{24} -4.24353 q^{25} +3.88600 q^{26} -1.00000 q^{27} +3.97135 q^{28} +1.00000 q^{29} +0.869754 q^{30} +10.7142 q^{31} +1.00000 q^{32} -3.41188 q^{33} -1.10357 q^{34} -3.45410 q^{35} +1.00000 q^{36} -10.8290 q^{37} +3.97135 q^{38} -3.88600 q^{39} -0.869754 q^{40} -12.2743 q^{41} -3.97135 q^{42} +8.48596 q^{43} +3.41188 q^{44} -0.869754 q^{45} +1.00000 q^{46} +6.30315 q^{47} -1.00000 q^{48} +8.77162 q^{49} -4.24353 q^{50} +1.10357 q^{51} +3.88600 q^{52} +3.72896 q^{53} -1.00000 q^{54} -2.96750 q^{55} +3.97135 q^{56} -3.97135 q^{57} +1.00000 q^{58} -9.89660 q^{59} +0.869754 q^{60} +8.38725 q^{61} +10.7142 q^{62} +3.97135 q^{63} +1.00000 q^{64} -3.37987 q^{65} -3.41188 q^{66} -11.7200 q^{67} -1.10357 q^{68} -1.00000 q^{69} -3.45410 q^{70} -3.08559 q^{71} +1.00000 q^{72} -14.2293 q^{73} -10.8290 q^{74} +4.24353 q^{75} +3.97135 q^{76} +13.5498 q^{77} -3.88600 q^{78} +0.168878 q^{79} -0.869754 q^{80} +1.00000 q^{81} -12.2743 q^{82} -7.07491 q^{83} -3.97135 q^{84} +0.959831 q^{85} +8.48596 q^{86} -1.00000 q^{87} +3.41188 q^{88} +6.49903 q^{89} -0.869754 q^{90} +15.4327 q^{91} +1.00000 q^{92} -10.7142 q^{93} +6.30315 q^{94} -3.45410 q^{95} -1.00000 q^{96} -0.491941 q^{97} +8.77162 q^{98} +3.41188 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + q^{5} - 8 q^{6} + 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + q^{5} - 8 q^{6} + 8 q^{8} + 8 q^{9} + q^{10} + 3 q^{11} - 8 q^{12} + 9 q^{13} - q^{15} + 8 q^{16} + 8 q^{17} + 8 q^{18} + q^{20} + 3 q^{22} + 8 q^{23} - 8 q^{24} + 13 q^{25} + 9 q^{26} - 8 q^{27} + 8 q^{29} - q^{30} - 9 q^{31} + 8 q^{32} - 3 q^{33} + 8 q^{34} - 2 q^{35} + 8 q^{36} + 7 q^{37} - 9 q^{39} + q^{40} + 3 q^{41} + 16 q^{43} + 3 q^{44} + q^{45} + 8 q^{46} + 24 q^{47} - 8 q^{48} + 6 q^{49} + 13 q^{50} - 8 q^{51} + 9 q^{52} + 8 q^{53} - 8 q^{54} + 13 q^{55} + 8 q^{58} - 3 q^{59} - q^{60} + 31 q^{61} - 9 q^{62} + 8 q^{64} + 13 q^{65} - 3 q^{66} - 11 q^{67} + 8 q^{68} - 8 q^{69} - 2 q^{70} + 7 q^{71} + 8 q^{72} + 14 q^{73} + 7 q^{74} - 13 q^{75} + 10 q^{77} - 9 q^{78} + 12 q^{79} + q^{80} + 8 q^{81} + 3 q^{82} - 8 q^{83} + 22 q^{85} + 16 q^{86} - 8 q^{87} + 3 q^{88} - 12 q^{89} + q^{90} + 28 q^{91} + 8 q^{92} + 9 q^{93} + 24 q^{94} - 2 q^{95} - 8 q^{96} + 16 q^{97} + 6 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −0.869754 −0.388966 −0.194483 0.980906i \(-0.562303\pi\)
−0.194483 + 0.980906i \(0.562303\pi\)
\(6\) −1.00000 −0.408248
\(7\) 3.97135 1.50103 0.750515 0.660854i \(-0.229806\pi\)
0.750515 + 0.660854i \(0.229806\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −0.869754 −0.275041
\(11\) 3.41188 1.02872 0.514360 0.857574i \(-0.328029\pi\)
0.514360 + 0.857574i \(0.328029\pi\)
\(12\) −1.00000 −0.288675
\(13\) 3.88600 1.07778 0.538892 0.842375i \(-0.318843\pi\)
0.538892 + 0.842375i \(0.318843\pi\)
\(14\) 3.97135 1.06139
\(15\) 0.869754 0.224570
\(16\) 1.00000 0.250000
\(17\) −1.10357 −0.267654 −0.133827 0.991005i \(-0.542727\pi\)
−0.133827 + 0.991005i \(0.542727\pi\)
\(18\) 1.00000 0.235702
\(19\) 3.97135 0.911090 0.455545 0.890213i \(-0.349444\pi\)
0.455545 + 0.890213i \(0.349444\pi\)
\(20\) −0.869754 −0.194483
\(21\) −3.97135 −0.866620
\(22\) 3.41188 0.727415
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) −4.24353 −0.848705
\(26\) 3.88600 0.762108
\(27\) −1.00000 −0.192450
\(28\) 3.97135 0.750515
\(29\) 1.00000 0.185695
\(30\) 0.869754 0.158795
\(31\) 10.7142 1.92433 0.962163 0.272473i \(-0.0878416\pi\)
0.962163 + 0.272473i \(0.0878416\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.41188 −0.593932
\(34\) −1.10357 −0.189260
\(35\) −3.45410 −0.583849
\(36\) 1.00000 0.166667
\(37\) −10.8290 −1.78028 −0.890140 0.455686i \(-0.849394\pi\)
−0.890140 + 0.455686i \(0.849394\pi\)
\(38\) 3.97135 0.644238
\(39\) −3.88600 −0.622259
\(40\) −0.869754 −0.137520
\(41\) −12.2743 −1.91692 −0.958458 0.285233i \(-0.907929\pi\)
−0.958458 + 0.285233i \(0.907929\pi\)
\(42\) −3.97135 −0.612793
\(43\) 8.48596 1.29410 0.647049 0.762449i \(-0.276003\pi\)
0.647049 + 0.762449i \(0.276003\pi\)
\(44\) 3.41188 0.514360
\(45\) −0.869754 −0.129655
\(46\) 1.00000 0.147442
\(47\) 6.30315 0.919409 0.459704 0.888072i \(-0.347955\pi\)
0.459704 + 0.888072i \(0.347955\pi\)
\(48\) −1.00000 −0.144338
\(49\) 8.77162 1.25309
\(50\) −4.24353 −0.600125
\(51\) 1.10357 0.154530
\(52\) 3.88600 0.538892
\(53\) 3.72896 0.512212 0.256106 0.966649i \(-0.417560\pi\)
0.256106 + 0.966649i \(0.417560\pi\)
\(54\) −1.00000 −0.136083
\(55\) −2.96750 −0.400137
\(56\) 3.97135 0.530694
\(57\) −3.97135 −0.526018
\(58\) 1.00000 0.131306
\(59\) −9.89660 −1.28843 −0.644214 0.764846i \(-0.722815\pi\)
−0.644214 + 0.764846i \(0.722815\pi\)
\(60\) 0.869754 0.112285
\(61\) 8.38725 1.07388 0.536939 0.843621i \(-0.319581\pi\)
0.536939 + 0.843621i \(0.319581\pi\)
\(62\) 10.7142 1.36070
\(63\) 3.97135 0.500343
\(64\) 1.00000 0.125000
\(65\) −3.37987 −0.419221
\(66\) −3.41188 −0.419974
\(67\) −11.7200 −1.43183 −0.715914 0.698188i \(-0.753990\pi\)
−0.715914 + 0.698188i \(0.753990\pi\)
\(68\) −1.10357 −0.133827
\(69\) −1.00000 −0.120386
\(70\) −3.45410 −0.412844
\(71\) −3.08559 −0.366192 −0.183096 0.983095i \(-0.558612\pi\)
−0.183096 + 0.983095i \(0.558612\pi\)
\(72\) 1.00000 0.117851
\(73\) −14.2293 −1.66542 −0.832708 0.553712i \(-0.813211\pi\)
−0.832708 + 0.553712i \(0.813211\pi\)
\(74\) −10.8290 −1.25885
\(75\) 4.24353 0.490000
\(76\) 3.97135 0.455545
\(77\) 13.5498 1.54414
\(78\) −3.88600 −0.440003
\(79\) 0.168878 0.0190003 0.00950015 0.999955i \(-0.496976\pi\)
0.00950015 + 0.999955i \(0.496976\pi\)
\(80\) −0.869754 −0.0972415
\(81\) 1.00000 0.111111
\(82\) −12.2743 −1.35546
\(83\) −7.07491 −0.776573 −0.388286 0.921539i \(-0.626933\pi\)
−0.388286 + 0.921539i \(0.626933\pi\)
\(84\) −3.97135 −0.433310
\(85\) 0.959831 0.104108
\(86\) 8.48596 0.915065
\(87\) −1.00000 −0.107211
\(88\) 3.41188 0.363708
\(89\) 6.49903 0.688896 0.344448 0.938805i \(-0.388066\pi\)
0.344448 + 0.938805i \(0.388066\pi\)
\(90\) −0.869754 −0.0916802
\(91\) 15.4327 1.61778
\(92\) 1.00000 0.104257
\(93\) −10.7142 −1.11101
\(94\) 6.30315 0.650120
\(95\) −3.45410 −0.354383
\(96\) −1.00000 −0.102062
\(97\) −0.491941 −0.0499491 −0.0249745 0.999688i \(-0.507950\pi\)
−0.0249745 + 0.999688i \(0.507950\pi\)
\(98\) 8.77162 0.886067
\(99\) 3.41188 0.342907
\(100\) −4.24353 −0.424353
\(101\) −9.09579 −0.905065 −0.452533 0.891748i \(-0.649479\pi\)
−0.452533 + 0.891748i \(0.649479\pi\)
\(102\) 1.10357 0.109269
\(103\) 5.11596 0.504091 0.252045 0.967715i \(-0.418897\pi\)
0.252045 + 0.967715i \(0.418897\pi\)
\(104\) 3.88600 0.381054
\(105\) 3.45410 0.337086
\(106\) 3.72896 0.362189
\(107\) 14.2956 1.38201 0.691006 0.722849i \(-0.257168\pi\)
0.691006 + 0.722849i \(0.257168\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 4.26840 0.408839 0.204420 0.978883i \(-0.434469\pi\)
0.204420 + 0.978883i \(0.434469\pi\)
\(110\) −2.96750 −0.282940
\(111\) 10.8290 1.02785
\(112\) 3.97135 0.375257
\(113\) −3.74994 −0.352764 −0.176382 0.984322i \(-0.556439\pi\)
−0.176382 + 0.984322i \(0.556439\pi\)
\(114\) −3.97135 −0.371951
\(115\) −0.869754 −0.0811050
\(116\) 1.00000 0.0928477
\(117\) 3.88600 0.359261
\(118\) −9.89660 −0.911056
\(119\) −4.38264 −0.401756
\(120\) 0.869754 0.0793974
\(121\) 0.640933 0.0582666
\(122\) 8.38725 0.759346
\(123\) 12.2743 1.10673
\(124\) 10.7142 0.962163
\(125\) 8.03960 0.719084
\(126\) 3.97135 0.353796
\(127\) 20.9534 1.85931 0.929657 0.368425i \(-0.120103\pi\)
0.929657 + 0.368425i \(0.120103\pi\)
\(128\) 1.00000 0.0883883
\(129\) −8.48596 −0.747147
\(130\) −3.37987 −0.296434
\(131\) −17.2489 −1.50704 −0.753522 0.657423i \(-0.771646\pi\)
−0.753522 + 0.657423i \(0.771646\pi\)
\(132\) −3.41188 −0.296966
\(133\) 15.7716 1.36757
\(134\) −11.7200 −1.01246
\(135\) 0.869754 0.0748565
\(136\) −1.10357 −0.0946299
\(137\) 5.00919 0.427964 0.213982 0.976838i \(-0.431357\pi\)
0.213982 + 0.976838i \(0.431357\pi\)
\(138\) −1.00000 −0.0851257
\(139\) −1.82292 −0.154618 −0.0773089 0.997007i \(-0.524633\pi\)
−0.0773089 + 0.997007i \(0.524633\pi\)
\(140\) −3.45410 −0.291925
\(141\) −6.30315 −0.530821
\(142\) −3.08559 −0.258937
\(143\) 13.2586 1.10874
\(144\) 1.00000 0.0833333
\(145\) −0.869754 −0.0722292
\(146\) −14.2293 −1.17763
\(147\) −8.77162 −0.723471
\(148\) −10.8290 −0.890140
\(149\) −17.4286 −1.42780 −0.713902 0.700246i \(-0.753074\pi\)
−0.713902 + 0.700246i \(0.753074\pi\)
\(150\) 4.24353 0.346483
\(151\) 19.6072 1.59561 0.797805 0.602915i \(-0.205994\pi\)
0.797805 + 0.602915i \(0.205994\pi\)
\(152\) 3.97135 0.322119
\(153\) −1.10357 −0.0892180
\(154\) 13.5498 1.09187
\(155\) −9.31872 −0.748498
\(156\) −3.88600 −0.311129
\(157\) −7.35307 −0.586839 −0.293419 0.955984i \(-0.594793\pi\)
−0.293419 + 0.955984i \(0.594793\pi\)
\(158\) 0.168878 0.0134352
\(159\) −3.72896 −0.295726
\(160\) −0.869754 −0.0687601
\(161\) 3.97135 0.312986
\(162\) 1.00000 0.0785674
\(163\) 15.8239 1.23942 0.619711 0.784830i \(-0.287250\pi\)
0.619711 + 0.784830i \(0.287250\pi\)
\(164\) −12.2743 −0.958458
\(165\) 2.96750 0.231019
\(166\) −7.07491 −0.549120
\(167\) 19.4468 1.50484 0.752421 0.658683i \(-0.228886\pi\)
0.752421 + 0.658683i \(0.228886\pi\)
\(168\) −3.97135 −0.306396
\(169\) 2.10103 0.161618
\(170\) 0.959831 0.0736157
\(171\) 3.97135 0.303697
\(172\) 8.48596 0.647049
\(173\) 8.51012 0.647012 0.323506 0.946226i \(-0.395138\pi\)
0.323506 + 0.946226i \(0.395138\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −16.8525 −1.27393
\(176\) 3.41188 0.257180
\(177\) 9.89660 0.743874
\(178\) 6.49903 0.487123
\(179\) 12.6383 0.944632 0.472316 0.881429i \(-0.343418\pi\)
0.472316 + 0.881429i \(0.343418\pi\)
\(180\) −0.869754 −0.0648277
\(181\) 17.6425 1.31135 0.655677 0.755042i \(-0.272383\pi\)
0.655677 + 0.755042i \(0.272383\pi\)
\(182\) 15.4327 1.14395
\(183\) −8.38725 −0.620003
\(184\) 1.00000 0.0737210
\(185\) 9.41859 0.692469
\(186\) −10.7142 −0.785603
\(187\) −3.76523 −0.275341
\(188\) 6.30315 0.459704
\(189\) −3.97135 −0.288873
\(190\) −3.45410 −0.250587
\(191\) −21.0605 −1.52388 −0.761941 0.647646i \(-0.775754\pi\)
−0.761941 + 0.647646i \(0.775754\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −7.16232 −0.515555 −0.257778 0.966204i \(-0.582990\pi\)
−0.257778 + 0.966204i \(0.582990\pi\)
\(194\) −0.491941 −0.0353193
\(195\) 3.37987 0.242037
\(196\) 8.77162 0.626544
\(197\) 13.1123 0.934211 0.467106 0.884202i \(-0.345297\pi\)
0.467106 + 0.884202i \(0.345297\pi\)
\(198\) 3.41188 0.242472
\(199\) −15.9337 −1.12951 −0.564756 0.825258i \(-0.691030\pi\)
−0.564756 + 0.825258i \(0.691030\pi\)
\(200\) −4.24353 −0.300063
\(201\) 11.7200 0.826666
\(202\) −9.09579 −0.639978
\(203\) 3.97135 0.278734
\(204\) 1.10357 0.0772650
\(205\) 10.6756 0.745615
\(206\) 5.11596 0.356446
\(207\) 1.00000 0.0695048
\(208\) 3.88600 0.269446
\(209\) 13.5498 0.937257
\(210\) 3.45410 0.238355
\(211\) −10.2020 −0.702331 −0.351166 0.936313i \(-0.614215\pi\)
−0.351166 + 0.936313i \(0.614215\pi\)
\(212\) 3.72896 0.256106
\(213\) 3.08559 0.211421
\(214\) 14.2956 0.977230
\(215\) −7.38070 −0.503360
\(216\) −1.00000 −0.0680414
\(217\) 42.5498 2.88847
\(218\) 4.26840 0.289093
\(219\) 14.2293 0.961528
\(220\) −2.96750 −0.200069
\(221\) −4.28846 −0.288473
\(222\) 10.8290 0.726797
\(223\) −10.4267 −0.698225 −0.349113 0.937081i \(-0.613517\pi\)
−0.349113 + 0.937081i \(0.613517\pi\)
\(224\) 3.97135 0.265347
\(225\) −4.24353 −0.282902
\(226\) −3.74994 −0.249442
\(227\) −8.26175 −0.548351 −0.274176 0.961680i \(-0.588405\pi\)
−0.274176 + 0.961680i \(0.588405\pi\)
\(228\) −3.97135 −0.263009
\(229\) 26.8246 1.77262 0.886309 0.463095i \(-0.153261\pi\)
0.886309 + 0.463095i \(0.153261\pi\)
\(230\) −0.869754 −0.0573499
\(231\) −13.5498 −0.891510
\(232\) 1.00000 0.0656532
\(233\) −2.00939 −0.131640 −0.0658199 0.997832i \(-0.520966\pi\)
−0.0658199 + 0.997832i \(0.520966\pi\)
\(234\) 3.88600 0.254036
\(235\) −5.48219 −0.357619
\(236\) −9.89660 −0.644214
\(237\) −0.168878 −0.0109698
\(238\) −4.38264 −0.284085
\(239\) 24.0485 1.55557 0.777783 0.628533i \(-0.216344\pi\)
0.777783 + 0.628533i \(0.216344\pi\)
\(240\) 0.869754 0.0561424
\(241\) 7.05790 0.454639 0.227320 0.973820i \(-0.427004\pi\)
0.227320 + 0.973820i \(0.427004\pi\)
\(242\) 0.640933 0.0412007
\(243\) −1.00000 −0.0641500
\(244\) 8.38725 0.536939
\(245\) −7.62915 −0.487409
\(246\) 12.2743 0.782578
\(247\) 15.4327 0.981958
\(248\) 10.7142 0.680352
\(249\) 7.07491 0.448355
\(250\) 8.03960 0.508469
\(251\) −4.30776 −0.271903 −0.135952 0.990715i \(-0.543409\pi\)
−0.135952 + 0.990715i \(0.543409\pi\)
\(252\) 3.97135 0.250172
\(253\) 3.41188 0.214503
\(254\) 20.9534 1.31473
\(255\) −0.959831 −0.0601069
\(256\) 1.00000 0.0625000
\(257\) −13.7037 −0.854816 −0.427408 0.904059i \(-0.640573\pi\)
−0.427408 + 0.904059i \(0.640573\pi\)
\(258\) −8.48596 −0.528313
\(259\) −43.0058 −2.67225
\(260\) −3.37987 −0.209611
\(261\) 1.00000 0.0618984
\(262\) −17.2489 −1.06564
\(263\) 5.27982 0.325568 0.162784 0.986662i \(-0.447953\pi\)
0.162784 + 0.986662i \(0.447953\pi\)
\(264\) −3.41188 −0.209987
\(265\) −3.24328 −0.199233
\(266\) 15.7716 0.967020
\(267\) −6.49903 −0.397734
\(268\) −11.7200 −0.715914
\(269\) 12.4184 0.757161 0.378580 0.925568i \(-0.376412\pi\)
0.378580 + 0.925568i \(0.376412\pi\)
\(270\) 0.869754 0.0529316
\(271\) 7.61564 0.462617 0.231309 0.972880i \(-0.425699\pi\)
0.231309 + 0.972880i \(0.425699\pi\)
\(272\) −1.10357 −0.0669135
\(273\) −15.4327 −0.934028
\(274\) 5.00919 0.302616
\(275\) −14.4784 −0.873081
\(276\) −1.00000 −0.0601929
\(277\) 3.08343 0.185266 0.0926328 0.995700i \(-0.470472\pi\)
0.0926328 + 0.995700i \(0.470472\pi\)
\(278\) −1.82292 −0.109331
\(279\) 10.7142 0.641442
\(280\) −3.45410 −0.206422
\(281\) −16.2254 −0.967923 −0.483962 0.875089i \(-0.660803\pi\)
−0.483962 + 0.875089i \(0.660803\pi\)
\(282\) −6.30315 −0.375347
\(283\) −4.77190 −0.283660 −0.141830 0.989891i \(-0.545299\pi\)
−0.141830 + 0.989891i \(0.545299\pi\)
\(284\) −3.08559 −0.183096
\(285\) 3.45410 0.204603
\(286\) 13.2586 0.783997
\(287\) −48.7454 −2.87735
\(288\) 1.00000 0.0589256
\(289\) −15.7821 −0.928361
\(290\) −0.869754 −0.0510737
\(291\) 0.491941 0.0288381
\(292\) −14.2293 −0.832708
\(293\) −12.7599 −0.745439 −0.372720 0.927944i \(-0.621575\pi\)
−0.372720 + 0.927944i \(0.621575\pi\)
\(294\) −8.77162 −0.511571
\(295\) 8.60761 0.501154
\(296\) −10.8290 −0.629424
\(297\) −3.41188 −0.197977
\(298\) −17.4286 −1.00961
\(299\) 3.88600 0.224733
\(300\) 4.24353 0.245000
\(301\) 33.7007 1.94248
\(302\) 19.6072 1.12827
\(303\) 9.09579 0.522540
\(304\) 3.97135 0.227773
\(305\) −7.29485 −0.417702
\(306\) −1.10357 −0.0630866
\(307\) 1.10710 0.0631858 0.0315929 0.999501i \(-0.489942\pi\)
0.0315929 + 0.999501i \(0.489942\pi\)
\(308\) 13.5498 0.772070
\(309\) −5.11596 −0.291037
\(310\) −9.31872 −0.529268
\(311\) −28.1662 −1.59716 −0.798579 0.601890i \(-0.794414\pi\)
−0.798579 + 0.601890i \(0.794414\pi\)
\(312\) −3.88600 −0.220002
\(313\) 30.7562 1.73844 0.869221 0.494424i \(-0.164621\pi\)
0.869221 + 0.494424i \(0.164621\pi\)
\(314\) −7.35307 −0.414958
\(315\) −3.45410 −0.194616
\(316\) 0.168878 0.00950015
\(317\) −4.57743 −0.257094 −0.128547 0.991703i \(-0.541031\pi\)
−0.128547 + 0.991703i \(0.541031\pi\)
\(318\) −3.72896 −0.209110
\(319\) 3.41188 0.191029
\(320\) −0.869754 −0.0486208
\(321\) −14.2956 −0.797905
\(322\) 3.97135 0.221315
\(323\) −4.38264 −0.243857
\(324\) 1.00000 0.0555556
\(325\) −16.4904 −0.914721
\(326\) 15.8239 0.876404
\(327\) −4.26840 −0.236043
\(328\) −12.2743 −0.677732
\(329\) 25.0320 1.38006
\(330\) 2.96750 0.163355
\(331\) −3.85345 −0.211805 −0.105903 0.994377i \(-0.533773\pi\)
−0.105903 + 0.994377i \(0.533773\pi\)
\(332\) −7.07491 −0.388286
\(333\) −10.8290 −0.593427
\(334\) 19.4468 1.06408
\(335\) 10.1935 0.556932
\(336\) −3.97135 −0.216655
\(337\) −18.9026 −1.02969 −0.514844 0.857284i \(-0.672150\pi\)
−0.514844 + 0.857284i \(0.672150\pi\)
\(338\) 2.10103 0.114281
\(339\) 3.74994 0.203669
\(340\) 0.959831 0.0520541
\(341\) 36.5556 1.97960
\(342\) 3.97135 0.214746
\(343\) 7.03571 0.379893
\(344\) 8.48596 0.457533
\(345\) 0.869754 0.0468260
\(346\) 8.51012 0.457507
\(347\) 21.3126 1.14412 0.572060 0.820212i \(-0.306145\pi\)
0.572060 + 0.820212i \(0.306145\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −31.6871 −1.69617 −0.848086 0.529859i \(-0.822245\pi\)
−0.848086 + 0.529859i \(0.822245\pi\)
\(350\) −16.8525 −0.900806
\(351\) −3.88600 −0.207420
\(352\) 3.41188 0.181854
\(353\) −30.9852 −1.64918 −0.824588 0.565733i \(-0.808593\pi\)
−0.824588 + 0.565733i \(0.808593\pi\)
\(354\) 9.89660 0.525998
\(355\) 2.68371 0.142436
\(356\) 6.49903 0.344448
\(357\) 4.38264 0.231954
\(358\) 12.6383 0.667956
\(359\) 2.10902 0.111310 0.0556549 0.998450i \(-0.482275\pi\)
0.0556549 + 0.998450i \(0.482275\pi\)
\(360\) −0.869754 −0.0458401
\(361\) −3.22838 −0.169915
\(362\) 17.6425 0.927267
\(363\) −0.640933 −0.0336402
\(364\) 15.4327 0.808892
\(365\) 12.3760 0.647790
\(366\) −8.38725 −0.438409
\(367\) −22.6023 −1.17983 −0.589915 0.807466i \(-0.700839\pi\)
−0.589915 + 0.807466i \(0.700839\pi\)
\(368\) 1.00000 0.0521286
\(369\) −12.2743 −0.638972
\(370\) 9.41859 0.489649
\(371\) 14.8090 0.768845
\(372\) −10.7142 −0.555505
\(373\) −1.00960 −0.0522752 −0.0261376 0.999658i \(-0.508321\pi\)
−0.0261376 + 0.999658i \(0.508321\pi\)
\(374\) −3.76523 −0.194696
\(375\) −8.03960 −0.415163
\(376\) 6.30315 0.325060
\(377\) 3.88600 0.200139
\(378\) −3.97135 −0.204264
\(379\) 28.5480 1.46641 0.733207 0.680006i \(-0.238023\pi\)
0.733207 + 0.680006i \(0.238023\pi\)
\(380\) −3.45410 −0.177192
\(381\) −20.9534 −1.07348
\(382\) −21.0605 −1.07755
\(383\) −13.3023 −0.679714 −0.339857 0.940477i \(-0.610379\pi\)
−0.339857 + 0.940477i \(0.610379\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −11.7850 −0.600618
\(386\) −7.16232 −0.364553
\(387\) 8.48596 0.431366
\(388\) −0.491941 −0.0249745
\(389\) 10.4749 0.531100 0.265550 0.964097i \(-0.414446\pi\)
0.265550 + 0.964097i \(0.414446\pi\)
\(390\) 3.37987 0.171146
\(391\) −1.10357 −0.0558097
\(392\) 8.77162 0.443034
\(393\) 17.2489 0.870092
\(394\) 13.1123 0.660587
\(395\) −0.146883 −0.00739047
\(396\) 3.41188 0.171453
\(397\) 20.4609 1.02690 0.513452 0.858118i \(-0.328367\pi\)
0.513452 + 0.858118i \(0.328367\pi\)
\(398\) −15.9337 −0.798686
\(399\) −15.7716 −0.789568
\(400\) −4.24353 −0.212176
\(401\) −3.62643 −0.181095 −0.0905476 0.995892i \(-0.528862\pi\)
−0.0905476 + 0.995892i \(0.528862\pi\)
\(402\) 11.7200 0.584541
\(403\) 41.6354 2.07401
\(404\) −9.09579 −0.452533
\(405\) −0.869754 −0.0432184
\(406\) 3.97135 0.197095
\(407\) −36.9473 −1.83141
\(408\) 1.10357 0.0546346
\(409\) 15.7385 0.778220 0.389110 0.921191i \(-0.372783\pi\)
0.389110 + 0.921191i \(0.372783\pi\)
\(410\) 10.6756 0.527230
\(411\) −5.00919 −0.247085
\(412\) 5.11596 0.252045
\(413\) −39.3029 −1.93397
\(414\) 1.00000 0.0491473
\(415\) 6.15344 0.302060
\(416\) 3.88600 0.190527
\(417\) 1.82292 0.0892686
\(418\) 13.5498 0.662741
\(419\) −16.5985 −0.810888 −0.405444 0.914120i \(-0.632883\pi\)
−0.405444 + 0.914120i \(0.632883\pi\)
\(420\) 3.45410 0.168543
\(421\) 5.12375 0.249716 0.124858 0.992175i \(-0.460152\pi\)
0.124858 + 0.992175i \(0.460152\pi\)
\(422\) −10.2020 −0.496623
\(423\) 6.30315 0.306470
\(424\) 3.72896 0.181094
\(425\) 4.68301 0.227159
\(426\) 3.08559 0.149497
\(427\) 33.3087 1.61192
\(428\) 14.2956 0.691006
\(429\) −13.2586 −0.640130
\(430\) −7.38070 −0.355929
\(431\) 17.2532 0.831056 0.415528 0.909580i \(-0.363597\pi\)
0.415528 + 0.909580i \(0.363597\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 1.16706 0.0560855 0.0280427 0.999607i \(-0.491073\pi\)
0.0280427 + 0.999607i \(0.491073\pi\)
\(434\) 42.5498 2.04246
\(435\) 0.869754 0.0417015
\(436\) 4.26840 0.204420
\(437\) 3.97135 0.189975
\(438\) 14.2293 0.679903
\(439\) −18.9365 −0.903791 −0.451896 0.892071i \(-0.649252\pi\)
−0.451896 + 0.892071i \(0.649252\pi\)
\(440\) −2.96750 −0.141470
\(441\) 8.77162 0.417696
\(442\) −4.28846 −0.203981
\(443\) 20.7698 0.986803 0.493401 0.869802i \(-0.335753\pi\)
0.493401 + 0.869802i \(0.335753\pi\)
\(444\) 10.8290 0.513923
\(445\) −5.65256 −0.267957
\(446\) −10.4267 −0.493720
\(447\) 17.4286 0.824343
\(448\) 3.97135 0.187629
\(449\) −14.9893 −0.707389 −0.353694 0.935361i \(-0.615075\pi\)
−0.353694 + 0.935361i \(0.615075\pi\)
\(450\) −4.24353 −0.200042
\(451\) −41.8783 −1.97197
\(452\) −3.74994 −0.176382
\(453\) −19.6072 −0.921226
\(454\) −8.26175 −0.387743
\(455\) −13.4226 −0.629263
\(456\) −3.97135 −0.185975
\(457\) −23.7100 −1.10911 −0.554554 0.832148i \(-0.687111\pi\)
−0.554554 + 0.832148i \(0.687111\pi\)
\(458\) 26.8246 1.25343
\(459\) 1.10357 0.0515100
\(460\) −0.869754 −0.0405525
\(461\) 22.5922 1.05222 0.526112 0.850415i \(-0.323649\pi\)
0.526112 + 0.850415i \(0.323649\pi\)
\(462\) −13.5498 −0.630392
\(463\) −29.9269 −1.39082 −0.695411 0.718612i \(-0.744778\pi\)
−0.695411 + 0.718612i \(0.744778\pi\)
\(464\) 1.00000 0.0464238
\(465\) 9.31872 0.432145
\(466\) −2.00939 −0.0930834
\(467\) −37.7312 −1.74599 −0.872996 0.487727i \(-0.837826\pi\)
−0.872996 + 0.487727i \(0.837826\pi\)
\(468\) 3.88600 0.179631
\(469\) −46.5443 −2.14922
\(470\) −5.48219 −0.252875
\(471\) 7.35307 0.338811
\(472\) −9.89660 −0.455528
\(473\) 28.9531 1.33126
\(474\) −0.168878 −0.00775684
\(475\) −16.8525 −0.773247
\(476\) −4.38264 −0.200878
\(477\) 3.72896 0.170737
\(478\) 24.0485 1.09995
\(479\) 13.8725 0.633850 0.316925 0.948451i \(-0.397350\pi\)
0.316925 + 0.948451i \(0.397350\pi\)
\(480\) 0.869754 0.0396987
\(481\) −42.0816 −1.91876
\(482\) 7.05790 0.321478
\(483\) −3.97135 −0.180703
\(484\) 0.640933 0.0291333
\(485\) 0.427868 0.0194285
\(486\) −1.00000 −0.0453609
\(487\) −13.2357 −0.599767 −0.299884 0.953976i \(-0.596948\pi\)
−0.299884 + 0.953976i \(0.596948\pi\)
\(488\) 8.38725 0.379673
\(489\) −15.8239 −0.715581
\(490\) −7.62915 −0.344650
\(491\) −9.13444 −0.412231 −0.206116 0.978528i \(-0.566082\pi\)
−0.206116 + 0.978528i \(0.566082\pi\)
\(492\) 12.2743 0.553366
\(493\) −1.10357 −0.0497021
\(494\) 15.4327 0.694349
\(495\) −2.96750 −0.133379
\(496\) 10.7142 0.481082
\(497\) −12.2540 −0.549665
\(498\) 7.07491 0.317035
\(499\) −14.8193 −0.663405 −0.331702 0.943384i \(-0.607623\pi\)
−0.331702 + 0.943384i \(0.607623\pi\)
\(500\) 8.03960 0.359542
\(501\) −19.4468 −0.868821
\(502\) −4.30776 −0.192265
\(503\) 24.9943 1.11444 0.557221 0.830364i \(-0.311868\pi\)
0.557221 + 0.830364i \(0.311868\pi\)
\(504\) 3.97135 0.176898
\(505\) 7.91111 0.352040
\(506\) 3.41188 0.151677
\(507\) −2.10103 −0.0933100
\(508\) 20.9534 0.929657
\(509\) −36.3559 −1.61145 −0.805723 0.592292i \(-0.798223\pi\)
−0.805723 + 0.592292i \(0.798223\pi\)
\(510\) −0.959831 −0.0425020
\(511\) −56.5096 −2.49984
\(512\) 1.00000 0.0441942
\(513\) −3.97135 −0.175339
\(514\) −13.7037 −0.604446
\(515\) −4.44963 −0.196074
\(516\) −8.48596 −0.373574
\(517\) 21.5056 0.945815
\(518\) −43.0058 −1.88957
\(519\) −8.51012 −0.373553
\(520\) −3.37987 −0.148217
\(521\) 28.6153 1.25366 0.626829 0.779157i \(-0.284352\pi\)
0.626829 + 0.779157i \(0.284352\pi\)
\(522\) 1.00000 0.0437688
\(523\) 20.2550 0.885688 0.442844 0.896599i \(-0.353970\pi\)
0.442844 + 0.896599i \(0.353970\pi\)
\(524\) −17.2489 −0.753522
\(525\) 16.8525 0.735505
\(526\) 5.27982 0.230211
\(527\) −11.8238 −0.515053
\(528\) −3.41188 −0.148483
\(529\) 1.00000 0.0434783
\(530\) −3.24328 −0.140879
\(531\) −9.89660 −0.429476
\(532\) 15.7716 0.683786
\(533\) −47.6978 −2.06602
\(534\) −6.49903 −0.281241
\(535\) −12.4337 −0.537556
\(536\) −11.7200 −0.506228
\(537\) −12.6383 −0.545383
\(538\) 12.4184 0.535393
\(539\) 29.9277 1.28908
\(540\) 0.869754 0.0374283
\(541\) −0.743839 −0.0319801 −0.0159901 0.999872i \(-0.505090\pi\)
−0.0159901 + 0.999872i \(0.505090\pi\)
\(542\) 7.61564 0.327120
\(543\) −17.6425 −0.757110
\(544\) −1.10357 −0.0473150
\(545\) −3.71246 −0.159024
\(546\) −15.4327 −0.660458
\(547\) −24.6338 −1.05326 −0.526632 0.850093i \(-0.676545\pi\)
−0.526632 + 0.850093i \(0.676545\pi\)
\(548\) 5.00919 0.213982
\(549\) 8.38725 0.357959
\(550\) −14.4784 −0.617361
\(551\) 3.97135 0.169185
\(552\) −1.00000 −0.0425628
\(553\) 0.670675 0.0285200
\(554\) 3.08343 0.131003
\(555\) −9.41859 −0.399797
\(556\) −1.82292 −0.0773089
\(557\) −27.5147 −1.16584 −0.582919 0.812531i \(-0.698089\pi\)
−0.582919 + 0.812531i \(0.698089\pi\)
\(558\) 10.7142 0.453568
\(559\) 32.9765 1.39476
\(560\) −3.45410 −0.145962
\(561\) 3.76523 0.158968
\(562\) −16.2254 −0.684425
\(563\) 22.6939 0.956436 0.478218 0.878241i \(-0.341283\pi\)
0.478218 + 0.878241i \(0.341283\pi\)
\(564\) −6.30315 −0.265411
\(565\) 3.26153 0.137213
\(566\) −4.77190 −0.200578
\(567\) 3.97135 0.166781
\(568\) −3.08559 −0.129468
\(569\) −21.7374 −0.911281 −0.455641 0.890164i \(-0.650590\pi\)
−0.455641 + 0.890164i \(0.650590\pi\)
\(570\) 3.45410 0.144676
\(571\) −26.5786 −1.11228 −0.556140 0.831089i \(-0.687718\pi\)
−0.556140 + 0.831089i \(0.687718\pi\)
\(572\) 13.2586 0.554369
\(573\) 21.0605 0.879814
\(574\) −48.7454 −2.03459
\(575\) −4.24353 −0.176967
\(576\) 1.00000 0.0416667
\(577\) −28.3585 −1.18058 −0.590289 0.807192i \(-0.700986\pi\)
−0.590289 + 0.807192i \(0.700986\pi\)
\(578\) −15.7821 −0.656451
\(579\) 7.16232 0.297656
\(580\) −0.869754 −0.0361146
\(581\) −28.0970 −1.16566
\(582\) 0.491941 0.0203916
\(583\) 12.7228 0.526923
\(584\) −14.2293 −0.588814
\(585\) −3.37987 −0.139740
\(586\) −12.7599 −0.527105
\(587\) −22.0034 −0.908179 −0.454089 0.890956i \(-0.650035\pi\)
−0.454089 + 0.890956i \(0.650035\pi\)
\(588\) −8.77162 −0.361735
\(589\) 42.5498 1.75324
\(590\) 8.60761 0.354370
\(591\) −13.1123 −0.539367
\(592\) −10.8290 −0.445070
\(593\) −5.31579 −0.218293 −0.109147 0.994026i \(-0.534812\pi\)
−0.109147 + 0.994026i \(0.534812\pi\)
\(594\) −3.41188 −0.139991
\(595\) 3.81182 0.156270
\(596\) −17.4286 −0.713902
\(597\) 15.9337 0.652124
\(598\) 3.88600 0.158911
\(599\) 1.93302 0.0789810 0.0394905 0.999220i \(-0.487427\pi\)
0.0394905 + 0.999220i \(0.487427\pi\)
\(600\) 4.24353 0.173241
\(601\) −24.9439 −1.01748 −0.508740 0.860920i \(-0.669889\pi\)
−0.508740 + 0.860920i \(0.669889\pi\)
\(602\) 33.7007 1.37354
\(603\) −11.7200 −0.477276
\(604\) 19.6072 0.797805
\(605\) −0.557454 −0.0226637
\(606\) 9.09579 0.369491
\(607\) 6.60672 0.268158 0.134079 0.990971i \(-0.457192\pi\)
0.134079 + 0.990971i \(0.457192\pi\)
\(608\) 3.97135 0.161059
\(609\) −3.97135 −0.160927
\(610\) −7.29485 −0.295360
\(611\) 24.4941 0.990924
\(612\) −1.10357 −0.0446090
\(613\) 20.8250 0.841116 0.420558 0.907266i \(-0.361834\pi\)
0.420558 + 0.907266i \(0.361834\pi\)
\(614\) 1.10710 0.0446791
\(615\) −10.6756 −0.430481
\(616\) 13.5498 0.545936
\(617\) 40.7541 1.64070 0.820349 0.571864i \(-0.193779\pi\)
0.820349 + 0.571864i \(0.193779\pi\)
\(618\) −5.11596 −0.205794
\(619\) 39.1010 1.57160 0.785800 0.618480i \(-0.212251\pi\)
0.785800 + 0.618480i \(0.212251\pi\)
\(620\) −9.31872 −0.374249
\(621\) −1.00000 −0.0401286
\(622\) −28.1662 −1.12936
\(623\) 25.8099 1.03405
\(624\) −3.88600 −0.155565
\(625\) 14.2252 0.569006
\(626\) 30.7562 1.22926
\(627\) −13.5498 −0.541126
\(628\) −7.35307 −0.293419
\(629\) 11.9505 0.476499
\(630\) −3.45410 −0.137615
\(631\) 18.0567 0.718826 0.359413 0.933179i \(-0.382977\pi\)
0.359413 + 0.933179i \(0.382977\pi\)
\(632\) 0.168878 0.00671762
\(633\) 10.2020 0.405491
\(634\) −4.57743 −0.181793
\(635\) −18.2243 −0.723210
\(636\) −3.72896 −0.147863
\(637\) 34.0865 1.35056
\(638\) 3.41188 0.135078
\(639\) −3.08559 −0.122064
\(640\) −0.869754 −0.0343801
\(641\) 2.88089 0.113788 0.0568941 0.998380i \(-0.481880\pi\)
0.0568941 + 0.998380i \(0.481880\pi\)
\(642\) −14.2956 −0.564204
\(643\) −16.4349 −0.648129 −0.324065 0.946035i \(-0.605049\pi\)
−0.324065 + 0.946035i \(0.605049\pi\)
\(644\) 3.97135 0.156493
\(645\) 7.38070 0.290615
\(646\) −4.38264 −0.172433
\(647\) −2.83959 −0.111636 −0.0558179 0.998441i \(-0.517777\pi\)
−0.0558179 + 0.998441i \(0.517777\pi\)
\(648\) 1.00000 0.0392837
\(649\) −33.7660 −1.32543
\(650\) −16.4904 −0.646805
\(651\) −42.5498 −1.66766
\(652\) 15.8239 0.619711
\(653\) −28.9064 −1.13120 −0.565598 0.824681i \(-0.691355\pi\)
−0.565598 + 0.824681i \(0.691355\pi\)
\(654\) −4.26840 −0.166908
\(655\) 15.0023 0.586189
\(656\) −12.2743 −0.479229
\(657\) −14.2293 −0.555139
\(658\) 25.0320 0.975849
\(659\) 1.14344 0.0445420 0.0222710 0.999752i \(-0.492910\pi\)
0.0222710 + 0.999752i \(0.492910\pi\)
\(660\) 2.96750 0.115510
\(661\) 3.19109 0.124119 0.0620595 0.998072i \(-0.480233\pi\)
0.0620595 + 0.998072i \(0.480233\pi\)
\(662\) −3.85345 −0.149769
\(663\) 4.28846 0.166550
\(664\) −7.07491 −0.274560
\(665\) −13.7174 −0.531939
\(666\) −10.8290 −0.419616
\(667\) 1.00000 0.0387202
\(668\) 19.4468 0.752421
\(669\) 10.4267 0.403121
\(670\) 10.1935 0.393811
\(671\) 28.6163 1.10472
\(672\) −3.97135 −0.153198
\(673\) −1.17878 −0.0454388 −0.0227194 0.999742i \(-0.507232\pi\)
−0.0227194 + 0.999742i \(0.507232\pi\)
\(674\) −18.9026 −0.728099
\(675\) 4.24353 0.163333
\(676\) 2.10103 0.0808088
\(677\) −5.70017 −0.219075 −0.109538 0.993983i \(-0.534937\pi\)
−0.109538 + 0.993983i \(0.534937\pi\)
\(678\) 3.74994 0.144015
\(679\) −1.95367 −0.0749750
\(680\) 0.959831 0.0368078
\(681\) 8.26175 0.316591
\(682\) 36.5556 1.39979
\(683\) 37.1446 1.42130 0.710649 0.703547i \(-0.248402\pi\)
0.710649 + 0.703547i \(0.248402\pi\)
\(684\) 3.97135 0.151848
\(685\) −4.35677 −0.166464
\(686\) 7.03571 0.268625
\(687\) −26.8246 −1.02342
\(688\) 8.48596 0.323524
\(689\) 14.4908 0.552054
\(690\) 0.869754 0.0331110
\(691\) −14.5747 −0.554450 −0.277225 0.960805i \(-0.589415\pi\)
−0.277225 + 0.960805i \(0.589415\pi\)
\(692\) 8.51012 0.323506
\(693\) 13.5498 0.514713
\(694\) 21.3126 0.809015
\(695\) 1.58549 0.0601410
\(696\) −1.00000 −0.0379049
\(697\) 13.5454 0.513070
\(698\) −31.6871 −1.19937
\(699\) 2.00939 0.0760023
\(700\) −16.8525 −0.636966
\(701\) 28.1619 1.06366 0.531830 0.846851i \(-0.321505\pi\)
0.531830 + 0.846851i \(0.321505\pi\)
\(702\) −3.88600 −0.146668
\(703\) −43.0058 −1.62200
\(704\) 3.41188 0.128590
\(705\) 5.48219 0.206471
\(706\) −30.9852 −1.16614
\(707\) −36.1226 −1.35853
\(708\) 9.89660 0.371937
\(709\) 36.8117 1.38249 0.691247 0.722619i \(-0.257062\pi\)
0.691247 + 0.722619i \(0.257062\pi\)
\(710\) 2.68371 0.100718
\(711\) 0.168878 0.00633343
\(712\) 6.49903 0.243561
\(713\) 10.7142 0.401250
\(714\) 4.38264 0.164016
\(715\) −11.5317 −0.431262
\(716\) 12.6383 0.472316
\(717\) −24.0485 −0.898106
\(718\) 2.10902 0.0787079
\(719\) −36.2805 −1.35304 −0.676518 0.736426i \(-0.736512\pi\)
−0.676518 + 0.736426i \(0.736512\pi\)
\(720\) −0.869754 −0.0324138
\(721\) 20.3173 0.756655
\(722\) −3.22838 −0.120148
\(723\) −7.05790 −0.262486
\(724\) 17.6425 0.655677
\(725\) −4.24353 −0.157601
\(726\) −0.640933 −0.0237872
\(727\) −41.5726 −1.54184 −0.770922 0.636930i \(-0.780204\pi\)
−0.770922 + 0.636930i \(0.780204\pi\)
\(728\) 15.4327 0.571973
\(729\) 1.00000 0.0370370
\(730\) 12.3760 0.458057
\(731\) −9.36481 −0.346370
\(732\) −8.38725 −0.310002
\(733\) 18.6006 0.687028 0.343514 0.939147i \(-0.388383\pi\)
0.343514 + 0.939147i \(0.388383\pi\)
\(734\) −22.6023 −0.834265
\(735\) 7.62915 0.281406
\(736\) 1.00000 0.0368605
\(737\) −39.9873 −1.47295
\(738\) −12.2743 −0.451822
\(739\) 30.2426 1.11249 0.556246 0.831018i \(-0.312241\pi\)
0.556246 + 0.831018i \(0.312241\pi\)
\(740\) 9.41859 0.346234
\(741\) −15.4327 −0.566934
\(742\) 14.8090 0.543655
\(743\) 17.0003 0.623681 0.311840 0.950135i \(-0.399055\pi\)
0.311840 + 0.950135i \(0.399055\pi\)
\(744\) −10.7142 −0.392802
\(745\) 15.1586 0.555367
\(746\) −1.00960 −0.0369641
\(747\) −7.07491 −0.258858
\(748\) −3.76523 −0.137671
\(749\) 56.7730 2.07444
\(750\) −8.03960 −0.293565
\(751\) −21.4712 −0.783495 −0.391748 0.920073i \(-0.628129\pi\)
−0.391748 + 0.920073i \(0.628129\pi\)
\(752\) 6.30315 0.229852
\(753\) 4.30776 0.156983
\(754\) 3.88600 0.141520
\(755\) −17.0534 −0.620638
\(756\) −3.97135 −0.144437
\(757\) 22.1135 0.803728 0.401864 0.915699i \(-0.368362\pi\)
0.401864 + 0.915699i \(0.368362\pi\)
\(758\) 28.5480 1.03691
\(759\) −3.41188 −0.123843
\(760\) −3.45410 −0.125293
\(761\) −52.4118 −1.89993 −0.949963 0.312363i \(-0.898880\pi\)
−0.949963 + 0.312363i \(0.898880\pi\)
\(762\) −20.9534 −0.759062
\(763\) 16.9513 0.613679
\(764\) −21.0605 −0.761941
\(765\) 0.959831 0.0347028
\(766\) −13.3023 −0.480630
\(767\) −38.4582 −1.38865
\(768\) −1.00000 −0.0360844
\(769\) −45.3061 −1.63378 −0.816890 0.576794i \(-0.804304\pi\)
−0.816890 + 0.576794i \(0.804304\pi\)
\(770\) −11.7850 −0.424701
\(771\) 13.7037 0.493528
\(772\) −7.16232 −0.257778
\(773\) 7.27520 0.261671 0.130835 0.991404i \(-0.458234\pi\)
0.130835 + 0.991404i \(0.458234\pi\)
\(774\) 8.48596 0.305022
\(775\) −45.4660 −1.63319
\(776\) −0.491941 −0.0176597
\(777\) 43.0058 1.54283
\(778\) 10.4749 0.375544
\(779\) −48.7454 −1.74648
\(780\) 3.37987 0.121019
\(781\) −10.5277 −0.376709
\(782\) −1.10357 −0.0394634
\(783\) −1.00000 −0.0357371
\(784\) 8.77162 0.313272
\(785\) 6.39536 0.228260
\(786\) 17.2489 0.615248
\(787\) −49.0563 −1.74867 −0.874334 0.485325i \(-0.838701\pi\)
−0.874334 + 0.485325i \(0.838701\pi\)
\(788\) 13.1123 0.467106
\(789\) −5.27982 −0.187967
\(790\) −0.146883 −0.00522585
\(791\) −14.8923 −0.529510
\(792\) 3.41188 0.121236
\(793\) 32.5929 1.15741
\(794\) 20.4609 0.726130
\(795\) 3.24328 0.115027
\(796\) −15.9337 −0.564756
\(797\) −41.4125 −1.46691 −0.733454 0.679739i \(-0.762093\pi\)
−0.733454 + 0.679739i \(0.762093\pi\)
\(798\) −15.7716 −0.558309
\(799\) −6.95594 −0.246083
\(800\) −4.24353 −0.150031
\(801\) 6.49903 0.229632
\(802\) −3.62643 −0.128054
\(803\) −48.5488 −1.71325
\(804\) 11.7200 0.413333
\(805\) −3.45410 −0.121741
\(806\) 41.6354 1.46655
\(807\) −12.4184 −0.437147
\(808\) −9.09579 −0.319989
\(809\) 0.109614 0.00385383 0.00192691 0.999998i \(-0.499387\pi\)
0.00192691 + 0.999998i \(0.499387\pi\)
\(810\) −0.869754 −0.0305601
\(811\) −10.0041 −0.351292 −0.175646 0.984453i \(-0.556201\pi\)
−0.175646 + 0.984453i \(0.556201\pi\)
\(812\) 3.97135 0.139367
\(813\) −7.61564 −0.267092
\(814\) −36.9473 −1.29500
\(815\) −13.7629 −0.482093
\(816\) 1.10357 0.0386325
\(817\) 33.7007 1.17904
\(818\) 15.7385 0.550284
\(819\) 15.4327 0.539262
\(820\) 10.6756 0.372808
\(821\) 1.95182 0.0681191 0.0340596 0.999420i \(-0.489156\pi\)
0.0340596 + 0.999420i \(0.489156\pi\)
\(822\) −5.00919 −0.174716
\(823\) 49.0305 1.70910 0.854548 0.519372i \(-0.173834\pi\)
0.854548 + 0.519372i \(0.173834\pi\)
\(824\) 5.11596 0.178223
\(825\) 14.4784 0.504074
\(826\) −39.3029 −1.36752
\(827\) −30.3703 −1.05608 −0.528039 0.849220i \(-0.677073\pi\)
−0.528039 + 0.849220i \(0.677073\pi\)
\(828\) 1.00000 0.0347524
\(829\) −14.4696 −0.502551 −0.251276 0.967916i \(-0.580850\pi\)
−0.251276 + 0.967916i \(0.580850\pi\)
\(830\) 6.15344 0.213589
\(831\) −3.08343 −0.106963
\(832\) 3.88600 0.134723
\(833\) −9.68005 −0.335394
\(834\) 1.82292 0.0631224
\(835\) −16.9140 −0.585332
\(836\) 13.5498 0.468629
\(837\) −10.7142 −0.370337
\(838\) −16.5985 −0.573384
\(839\) −25.8736 −0.893257 −0.446628 0.894720i \(-0.647375\pi\)
−0.446628 + 0.894720i \(0.647375\pi\)
\(840\) 3.45410 0.119178
\(841\) 1.00000 0.0344828
\(842\) 5.12375 0.176576
\(843\) 16.2254 0.558831
\(844\) −10.2020 −0.351166
\(845\) −1.82738 −0.0628638
\(846\) 6.30315 0.216707
\(847\) 2.54537 0.0874599
\(848\) 3.72896 0.128053
\(849\) 4.77190 0.163771
\(850\) 4.68301 0.160626
\(851\) −10.8290 −0.371214
\(852\) 3.08559 0.105711
\(853\) 5.34374 0.182966 0.0914830 0.995807i \(-0.470839\pi\)
0.0914830 + 0.995807i \(0.470839\pi\)
\(854\) 33.3087 1.13980
\(855\) −3.45410 −0.118128
\(856\) 14.2956 0.488615
\(857\) 38.2959 1.30816 0.654081 0.756424i \(-0.273055\pi\)
0.654081 + 0.756424i \(0.273055\pi\)
\(858\) −13.2586 −0.452641
\(859\) 45.1669 1.54107 0.770537 0.637396i \(-0.219988\pi\)
0.770537 + 0.637396i \(0.219988\pi\)
\(860\) −7.38070 −0.251680
\(861\) 48.7454 1.66124
\(862\) 17.2532 0.587645
\(863\) 4.48316 0.152608 0.0763042 0.997085i \(-0.475688\pi\)
0.0763042 + 0.997085i \(0.475688\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −7.40171 −0.251666
\(866\) 1.16706 0.0396584
\(867\) 15.7821 0.535990
\(868\) 42.5498 1.44424
\(869\) 0.576193 0.0195460
\(870\) 0.869754 0.0294874
\(871\) −45.5440 −1.54320
\(872\) 4.26840 0.144546
\(873\) −0.491941 −0.0166497
\(874\) 3.97135 0.134333
\(875\) 31.9281 1.07937
\(876\) 14.2293 0.480764
\(877\) 22.7218 0.767260 0.383630 0.923487i \(-0.374674\pi\)
0.383630 + 0.923487i \(0.374674\pi\)
\(878\) −18.9365 −0.639077
\(879\) 12.7599 0.430379
\(880\) −2.96750 −0.100034
\(881\) −25.5531 −0.860906 −0.430453 0.902613i \(-0.641646\pi\)
−0.430453 + 0.902613i \(0.641646\pi\)
\(882\) 8.77162 0.295356
\(883\) 14.1858 0.477390 0.238695 0.971095i \(-0.423280\pi\)
0.238695 + 0.971095i \(0.423280\pi\)
\(884\) −4.28846 −0.144236
\(885\) −8.60761 −0.289342
\(886\) 20.7698 0.697775
\(887\) 25.7836 0.865729 0.432864 0.901459i \(-0.357503\pi\)
0.432864 + 0.901459i \(0.357503\pi\)
\(888\) 10.8290 0.363398
\(889\) 83.2133 2.79089
\(890\) −5.65256 −0.189474
\(891\) 3.41188 0.114302
\(892\) −10.4267 −0.349113
\(893\) 25.0320 0.837664
\(894\) 17.4286 0.582899
\(895\) −10.9922 −0.367430
\(896\) 3.97135 0.132673
\(897\) −3.88600 −0.129750
\(898\) −14.9893 −0.500199
\(899\) 10.7142 0.357339
\(900\) −4.24353 −0.141451
\(901\) −4.11515 −0.137095
\(902\) −41.8783 −1.39439
\(903\) −33.7007 −1.12149
\(904\) −3.74994 −0.124721
\(905\) −15.3446 −0.510072
\(906\) −19.6072 −0.651405
\(907\) −21.7571 −0.722431 −0.361216 0.932482i \(-0.617638\pi\)
−0.361216 + 0.932482i \(0.617638\pi\)
\(908\) −8.26175 −0.274176
\(909\) −9.09579 −0.301688
\(910\) −13.4226 −0.444956
\(911\) 9.73815 0.322639 0.161320 0.986902i \(-0.448425\pi\)
0.161320 + 0.986902i \(0.448425\pi\)
\(912\) −3.97135 −0.131505
\(913\) −24.1388 −0.798877
\(914\) −23.7100 −0.784257
\(915\) 7.29485 0.241160
\(916\) 26.8246 0.886309
\(917\) −68.5014 −2.26212
\(918\) 1.10357 0.0364231
\(919\) 21.0956 0.695879 0.347939 0.937517i \(-0.386881\pi\)
0.347939 + 0.937517i \(0.386881\pi\)
\(920\) −0.869754 −0.0286750
\(921\) −1.10710 −0.0364803
\(922\) 22.5922 0.744035
\(923\) −11.9906 −0.394676
\(924\) −13.5498 −0.445755
\(925\) 45.9533 1.51093
\(926\) −29.9269 −0.983460
\(927\) 5.11596 0.168030
\(928\) 1.00000 0.0328266
\(929\) 49.4089 1.62105 0.810527 0.585701i \(-0.199181\pi\)
0.810527 + 0.585701i \(0.199181\pi\)
\(930\) 9.31872 0.305573
\(931\) 34.8352 1.14168
\(932\) −2.00939 −0.0658199
\(933\) 28.1662 0.922119
\(934\) −37.7312 −1.23460
\(935\) 3.27483 0.107098
\(936\) 3.88600 0.127018
\(937\) −11.0242 −0.360145 −0.180072 0.983653i \(-0.557633\pi\)
−0.180072 + 0.983653i \(0.557633\pi\)
\(938\) −46.5443 −1.51973
\(939\) −30.7562 −1.00369
\(940\) −5.48219 −0.178809
\(941\) 17.0192 0.554810 0.277405 0.960753i \(-0.410526\pi\)
0.277405 + 0.960753i \(0.410526\pi\)
\(942\) 7.35307 0.239576
\(943\) −12.2743 −0.399705
\(944\) −9.89660 −0.322107
\(945\) 3.45410 0.112362
\(946\) 28.9531 0.941346
\(947\) 29.5904 0.961559 0.480779 0.876842i \(-0.340354\pi\)
0.480779 + 0.876842i \(0.340354\pi\)
\(948\) −0.168878 −0.00548491
\(949\) −55.2952 −1.79496
\(950\) −16.8525 −0.546768
\(951\) 4.57743 0.148433
\(952\) −4.38264 −0.142042
\(953\) −43.2397 −1.40067 −0.700336 0.713813i \(-0.746966\pi\)
−0.700336 + 0.713813i \(0.746966\pi\)
\(954\) 3.72896 0.120730
\(955\) 18.3174 0.592739
\(956\) 24.0485 0.777783
\(957\) −3.41188 −0.110290
\(958\) 13.8725 0.448200
\(959\) 19.8933 0.642387
\(960\) 0.869754 0.0280712
\(961\) 83.7940 2.70303
\(962\) −42.0816 −1.35677
\(963\) 14.2956 0.460671
\(964\) 7.05790 0.227320
\(965\) 6.22946 0.200533
\(966\) −3.97135 −0.127776
\(967\) 37.0535 1.19156 0.595780 0.803148i \(-0.296843\pi\)
0.595780 + 0.803148i \(0.296843\pi\)
\(968\) 0.640933 0.0206004
\(969\) 4.38264 0.140791
\(970\) 0.427868 0.0137380
\(971\) 4.20394 0.134911 0.0674555 0.997722i \(-0.478512\pi\)
0.0674555 + 0.997722i \(0.478512\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −7.23944 −0.232086
\(974\) −13.2357 −0.424099
\(975\) 16.4904 0.528114
\(976\) 8.38725 0.268469
\(977\) −55.5661 −1.77772 −0.888859 0.458180i \(-0.848501\pi\)
−0.888859 + 0.458180i \(0.848501\pi\)
\(978\) −15.8239 −0.505992
\(979\) 22.1739 0.708681
\(980\) −7.62915 −0.243704
\(981\) 4.26840 0.136280
\(982\) −9.13444 −0.291492
\(983\) 9.14713 0.291748 0.145874 0.989303i \(-0.453401\pi\)
0.145874 + 0.989303i \(0.453401\pi\)
\(984\) 12.2743 0.391289
\(985\) −11.4045 −0.363376
\(986\) −1.10357 −0.0351447
\(987\) −25.0320 −0.796778
\(988\) 15.4327 0.490979
\(989\) 8.48596 0.269838
\(990\) −2.96750 −0.0943133
\(991\) −14.5033 −0.460711 −0.230355 0.973107i \(-0.573989\pi\)
−0.230355 + 0.973107i \(0.573989\pi\)
\(992\) 10.7142 0.340176
\(993\) 3.85345 0.122286
\(994\) −12.2540 −0.388672
\(995\) 13.8584 0.439342
\(996\) 7.07491 0.224177
\(997\) 3.70874 0.117457 0.0587284 0.998274i \(-0.481295\pi\)
0.0587284 + 0.998274i \(0.481295\pi\)
\(998\) −14.8193 −0.469098
\(999\) 10.8290 0.342615
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bj.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bj.1.4 8 1.1 even 1 trivial