Defining parameters
| Level: | \( N \) | \(=\) | \( 40 = 2^{3} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 40.e (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(18\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(40, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 14 | 14 | 0 |
| Cusp forms | 10 | 10 | 0 |
| Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(40, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 40.3.e.a | $1$ | $1.090$ | \(\Q\) | \(\Q(\sqrt{-10}) \) | \(-2\) | \(0\) | \(5\) | \(6\) | \(q-2q^{2}+4q^{4}+5q^{5}+6q^{7}-8q^{8}+\cdots\) |
| 40.3.e.b | $1$ | $1.090$ | \(\Q\) | \(\Q(\sqrt{-10}) \) | \(2\) | \(0\) | \(-5\) | \(-6\) | \(q+2q^{2}+4q^{4}-5q^{5}-6q^{7}+8q^{8}+\cdots\) |
| 40.3.e.c | $8$ | $1.090$ | 8.0.\(\cdots\).2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}-\beta _{7}q^{3}+(-2-\beta _{3}-\beta _{6}+\cdots)q^{4}+\cdots\) |