Properties

Label 40.12
Level 40
Weight 12
Dimension 263
Nonzero newspaces 5
Newform subspaces 9
Sturm bound 1152
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 9 \)
Sturm bound: \(1152\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(40))\).

Total New Old
Modular forms 552 275 277
Cusp forms 504 263 241
Eisenstein series 48 12 36

Trace form

\( 263 q - 48 q^{2} - 44 q^{3} - 876 q^{4} + 2091 q^{5} + 48608 q^{6} - 35464 q^{7} + 416940 q^{8} + 511323 q^{9} - 29868 q^{10} + 217596 q^{11} + 1661016 q^{12} - 2286454 q^{13} - 2847936 q^{14} - 7698676 q^{15}+ \cdots - 181067793324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(40))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
40.12.a \(\chi_{40}(1, \cdot)\) 40.12.a.a 1 1
40.12.a.b 2
40.12.a.c 2
40.12.a.d 3
40.12.a.e 3
40.12.c \(\chi_{40}(9, \cdot)\) 40.12.c.a 16 1
40.12.d \(\chi_{40}(21, \cdot)\) 40.12.d.a 44 1
40.12.f \(\chi_{40}(29, \cdot)\) 40.12.f.a 64 1
40.12.j \(\chi_{40}(7, \cdot)\) None 0 2
40.12.k \(\chi_{40}(3, \cdot)\) 40.12.k.a 128 2

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(40))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(40)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)