Defining parameters
| Level: | \( N \) | = | \( 40 = 2^{3} \cdot 5 \) |
| Weight: | \( k \) | = | \( 12 \) |
| Nonzero newspaces: | \( 5 \) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(1152\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(40))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 552 | 275 | 277 |
| Cusp forms | 504 | 263 | 241 |
| Eisenstein series | 48 | 12 | 36 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(40))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(40))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_1(40)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)