Properties

Label 4.21
Level 4
Weight 21
Dimension 9
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 21
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4 = 2^{2} \)
Weight: \( k \) = \( 21 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(21\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(\Gamma_1(4))\).

Total New Old
Modular forms 11 11 0
Cusp forms 9 9 0
Eisenstein series 2 2 0

Trace form

\( 9 q - 628 q^{2} - 267504 q^{4} - 738494 q^{5} + 99460608 q^{6} + 1103532992 q^{8} - 6924577767 q^{9} + 1611884376 q^{10} - 41779799040 q^{12} + 147660923874 q^{13} - 200556776448 q^{14} + 70138216704 q^{16}+ \cdots - 27\!\cdots\!08 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(\Gamma_1(4))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4.21.b \(\chi_{4}(3, \cdot)\) 4.21.b.a 1 1
4.21.b.b 8