Properties

Label 4.13
Level 4
Weight 13
Dimension 5
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 13
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4 = 2^{2} \)
Weight: \( k \) = \( 13 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(13\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{13}(\Gamma_1(4))\).

Total New Old
Modular forms 7 7 0
Cusp forms 5 5 0
Eisenstein series 2 2 0

Trace form

\( 5 q + 44 q^{2} + 2576 q^{4} + 5146 q^{5} + 15744 q^{6} + 188864 q^{8} - 834123 q^{9} - 554984 q^{10} + 6919680 q^{12} - 409862 q^{13} - 18365184 q^{14} + 56172800 q^{16} + 11951818 q^{17} - 176665236 q^{18}+ \cdots + 588933129644 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{13}^{\mathrm{new}}(\Gamma_1(4))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4.13.b \(\chi_{4}(3, \cdot)\) 4.13.b.a 1 1
4.13.b.b 4