gp:[N,k,chi] = [39710,2,Mod(1,39710)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("39710.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(39710, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,1,-1,1,-1,-1,4,1,-2,-1,-1,-1,-3,4,1,1,6,-2,0,-1,-4,-1,3,-1,
1,-3,5,4,-4,1,5,1,1,6,-4,-2,8,0,3,-1,3,-4,7,-1,2,3,-7,-1,9,1,-6,-3,0,5,
1,4,0,-4,10,1,3,5,-8,1,3,1,13,6,-3,-4,-12,-2,-3,8,-1,0,-4,3,8,-1,1,3,-7,
-4,-6,7,4,-1,2,2,-12,3,-5,-7,0,-1,2,9,2,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
\( p \) |
Sign
|
\(2\) |
\( -1 \) |
\(5\) |
\( +1 \) |
\(11\) |
\( +1 \) |
\(19\) |
\( +1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.