Defining parameters
| Level: | \( N \) | \(=\) | \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 3920.v (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 140 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(672\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3920, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 128 | 8 | 120 |
| Cusp forms | 32 | 8 | 24 |
| Eisenstein series | 96 | 0 | 96 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3920, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 3920.1.v.a | $8$ | $1.956$ | \(\Q(\zeta_{16})\) | $D_{8}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{16}^{5}q^{5}-\zeta_{16}^{4}q^{9}+(\zeta_{16}^{5}+\zeta_{16}^{7}+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3920, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3920, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(980, [\chi])\)\(^{\oplus 3}\)