Properties

Label 392.3.s
Level $392$
Weight $3$
Character orbit 392.s
Rep. character $\chi_{392}(43,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $660$
Newform subspaces $1$
Sturm bound $168$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 392.s (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 392 \)
Character field: \(\Q(\zeta_{14})\)
Newform subspaces: \( 1 \)
Sturm bound: \(168\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(392, [\chi])\).

Total New Old
Modular forms 684 684 0
Cusp forms 660 660 0
Eisenstein series 24 24 0

Trace form

\( 660 q - 5 q^{2} - 10 q^{3} - 5 q^{4} + 3 q^{6} + q^{8} - 328 q^{9} + 5 q^{10} - 10 q^{11} + 38 q^{12} + 91 q^{14} + 19 q^{16} - 10 q^{17} - 36 q^{18} - 24 q^{19} + 45 q^{20} - 9 q^{22} - 147 q^{24} + 500 q^{25}+ \cdots + 336 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(392, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
392.3.s.a 392.s 392.s $660$ $10.681$ None 392.3.s.a \(-5\) \(-10\) \(0\) \(0\) $\mathrm{SU}(2)[C_{14}]$