Properties

Label 3900.1.cu
Level $3900$
Weight $1$
Character orbit 3900.cu
Rep. character $\chi_{3900}(557,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $16$
Newform subspaces $2$
Sturm bound $840$
Trace bound $21$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3900.cu (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 195 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 2 \)
Sturm bound: \(840\)
Trace bound: \(21\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3900, [\chi])\).

Total New Old
Modular forms 184 16 168
Cusp forms 40 16 24
Eisenstein series 144 0 144

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - 8 q^{19} + 4 q^{21} + 8 q^{31} - 8 q^{49} + 8 q^{81} - 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3900, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3900.1.cu.a 3900.cu 195.ac $8$ $1.946$ \(\Q(\zeta_{24})\) $D_{12}$ \(\Q(\sqrt{-3}) \) None 3900.1.cu.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{24}^{7}q^{3}+(\zeta_{24}^{7}+\zeta_{24}^{9})q^{7}-\zeta_{24}^{2}q^{9}+\cdots\)
3900.1.cu.b 3900.cu 195.ac $8$ $1.946$ \(\Q(\zeta_{24})\) $D_{12}$ \(\Q(\sqrt{-3}) \) None 3900.1.cu.b \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{24}^{7}q^{3}+(\zeta_{24}^{5}+\zeta_{24}^{11})q^{7}-\zeta_{24}^{2}q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3900, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3900, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 3}\)