Defining parameters
Level: | \( N \) | \(=\) | \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3900.cu (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 195 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(840\) | ||
Trace bound: | \(21\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3900, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 16 | 168 |
Cusp forms | 40 | 16 | 24 |
Eisenstein series | 144 | 0 | 144 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3900, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3900.1.cu.a | $8$ | $1.946$ | \(\Q(\zeta_{24})\) | $D_{12}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{24}^{7}q^{3}+(\zeta_{24}^{7}+\zeta_{24}^{9})q^{7}-\zeta_{24}^{2}q^{9}+\cdots\) |
3900.1.cu.b | $8$ | $1.946$ | \(\Q(\zeta_{24})\) | $D_{12}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{24}^{7}q^{3}+(\zeta_{24}^{5}+\zeta_{24}^{11})q^{7}-\zeta_{24}^{2}q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3900, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3900, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 3}\)