Properties

Label 3900.1.cb
Level $3900$
Weight $1$
Character orbit 3900.cb
Rep. character $\chi_{3900}(1049,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $2$
Sturm bound $840$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3900.cb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 195 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(840\)
Trace bound: \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3900, [\chi])\).

Total New Old
Modular forms 92 8 84
Cusp forms 20 8 12
Eisenstein series 72 0 72

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + 4 q^{9} + 2 q^{19} + 4 q^{21} - 8 q^{31} - 2 q^{39} + 6 q^{49} + 4 q^{61} + 8 q^{79} - 4 q^{81} + 10 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3900, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3900.1.cb.a 3900.cb 195.x $4$ $1.946$ \(\Q(\zeta_{12})\) $D_{3}$ \(\Q(\sqrt{-3}) \) None 3900.1.bu.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{12}q^{3}+\zeta_{12}^{5}q^{7}+\zeta_{12}^{2}q^{9}-\zeta_{12}q^{13}+\cdots\)
3900.1.cb.b 3900.cb 195.x $4$ $1.946$ \(\Q(\zeta_{12})\) $D_{3}$ \(\Q(\sqrt{-3}) \) None 156.1.o.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{12}q^{3}+\zeta_{12}^{5}q^{7}+\zeta_{12}^{2}q^{9}+\zeta_{12}^{5}q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3900, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3900, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 3}\)