Properties

Label 3900.1.ca
Level $3900$
Weight $1$
Character orbit 3900.ca
Rep. character $\chi_{3900}(101,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $6$
Newform subspaces $3$
Sturm bound $840$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3900.ca (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(840\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3900, [\chi])\).

Total New Old
Modular forms 96 6 90
Cusp forms 24 6 18
Eisenstein series 72 0 72

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 6 0 0 0

Trace form

\( 6 q - q^{3} + 3 q^{7} - 3 q^{9} - q^{13} + 6 q^{19} + 2 q^{27} - q^{43} - 3 q^{61} - 3 q^{63} - 3 q^{67} + 6 q^{79} - 3 q^{81} - 3 q^{91} + 3 q^{93} + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3900, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3900.1.ca.a 3900.ca 39.h $2$ $1.946$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 3900.1.ca.a \(0\) \(-1\) \(0\) \(0\) \(q+\zeta_{6}^{2}q^{3}-\zeta_{6}q^{9}+\zeta_{6}^{2}q^{13}+(1-\zeta_{6}^{2}+\cdots)q^{19}+\cdots\)
3900.1.ca.b 3900.ca 39.h $2$ $1.946$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 156.1.s.a \(0\) \(-1\) \(0\) \(3\) \(q+\zeta_{6}^{2}q^{3}+(1-\zeta_{6}^{2})q^{7}-\zeta_{6}q^{9}-\zeta_{6}q^{13}+\cdots\)
3900.1.ca.c 3900.ca 39.h $2$ $1.946$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 3900.1.ca.a \(0\) \(1\) \(0\) \(0\) \(q-\zeta_{6}^{2}q^{3}-\zeta_{6}q^{9}-\zeta_{6}^{2}q^{13}+(1-\zeta_{6}^{2}+\cdots)q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3900, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3900, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 3}\)