Defining parameters
Level: | \( N \) | \(=\) | \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3900.ca (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 39 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(840\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3900, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 96 | 6 | 90 |
Cusp forms | 24 | 6 | 18 |
Eisenstein series | 72 | 0 | 72 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 6 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3900, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3900.1.ca.a | $2$ | $1.946$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(0\) | \(0\) | \(q+\zeta_{6}^{2}q^{3}-\zeta_{6}q^{9}+\zeta_{6}^{2}q^{13}+(1-\zeta_{6}^{2}+\cdots)q^{19}+\cdots\) |
3900.1.ca.b | $2$ | $1.946$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(0\) | \(3\) | \(q+\zeta_{6}^{2}q^{3}+(1-\zeta_{6}^{2})q^{7}-\zeta_{6}q^{9}-\zeta_{6}q^{13}+\cdots\) |
3900.1.ca.c | $2$ | $1.946$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(1\) | \(0\) | \(0\) | \(q-\zeta_{6}^{2}q^{3}-\zeta_{6}q^{9}-\zeta_{6}^{2}q^{13}+(1-\zeta_{6}^{2}+\cdots)q^{19}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3900, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3900, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 3}\)