Defining parameters
Level: | \( N \) | \(=\) | \( 39 = 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 39.h (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 39 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(23\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(39, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 42 | 0 |
Cusp forms | 34 | 34 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(39, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
39.5.h.a | $2$ | $4.031$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(9\) | \(0\) | \(117\) | \(q+(9-9\zeta_{6})q^{3}+2^{4}\zeta_{6}q^{4}+(78-39\zeta_{6})q^{7}+\cdots\) |
39.5.h.b | $32$ | $4.031$ | None | \(0\) | \(-10\) | \(0\) | \(-210\) |