Properties

Label 39.5.c
Level $39$
Weight $5$
Character orbit 39.c
Rep. character $\chi_{39}(14,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $1$
Sturm bound $23$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 39.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(23\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(39, [\chi])\).

Total New Old
Modular forms 20 16 4
Cusp forms 16 16 0
Eisenstein series 4 0 4

Trace form

\( 16 q - 2 q^{3} - 100 q^{4} + 96 q^{6} - 80 q^{7} + 66 q^{9} + 240 q^{10} - 102 q^{12} - 356 q^{15} + 456 q^{16} - 388 q^{18} - 112 q^{19} + 472 q^{21} - 316 q^{22} - 624 q^{24} - 1428 q^{25} + 1540 q^{27}+ \cdots + 48492 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(39, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
39.5.c.a 39.c 3.b $16$ $4.031$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 39.5.c.a \(0\) \(-2\) \(0\) \(-80\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{6}q^{3}+(-6+\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)