Properties

Label 3871.2.v
Level $3871$
Weight $2$
Character orbit 3871.v
Rep. character $\chi_{3871}(1079,\cdot)$
Character field $\Q(\zeta_{13})$
Dimension $3228$
Sturm bound $746$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3871.v (of order \(13\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 79 \)
Character field: \(\Q(\zeta_{13})\)
Sturm bound: \(746\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3871, [\chi])\).

Total New Old
Modular forms 4560 3348 1212
Cusp forms 4368 3228 1140
Eisenstein series 192 120 72

Trace form

\( 3228 q + 9 q^{2} + 9 q^{3} - 253 q^{4} + 11 q^{5} + 9 q^{6} - 39 q^{8} - 254 q^{9} + 15 q^{10} + 31 q^{11} - 7 q^{12} + 3 q^{13} - 53 q^{15} - 247 q^{16} + 3 q^{17} + 68 q^{18} + 9 q^{19} + 18 q^{20} - 36 q^{22}+ \cdots - 152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3871, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3871, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3871, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(79, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(553, [\chi])\)\(^{\oplus 2}\)