Defining parameters
| Level: | \( N \) | \(=\) | \( 385 = 5 \cdot 7 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 385.t (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(385, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 104 | 80 | 24 |
| Cusp forms | 88 | 80 | 8 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(385, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 385.2.t.a | $4$ | $3.074$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+\zeta_{12}q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}-\zeta_{12}^{2}q^{4}+\cdots\) |
| 385.2.t.b | $36$ | $3.074$ | None | \(0\) | \(0\) | \(2\) | \(0\) | ||
| 385.2.t.c | $40$ | $3.074$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(385, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(385, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)