Properties

Label 385.2.t
Level $385$
Weight $2$
Character orbit 385.t
Rep. character $\chi_{385}(144,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $3$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 385 = 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 385.t (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(385, [\chi])\).

Total New Old
Modular forms 104 80 24
Cusp forms 88 80 8
Eisenstein series 16 0 16

Trace form

\( 80 q + 40 q^{4} - 8 q^{6} + 36 q^{9} - 6 q^{10} - 28 q^{14} - 28 q^{15} - 36 q^{16} - 8 q^{19} - 24 q^{20} - 12 q^{24} + 4 q^{25} + 16 q^{26} + 48 q^{29} - 16 q^{30} + 12 q^{31} - 24 q^{34} + 14 q^{35}+ \cdots - 84 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(385, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
385.2.t.a 385.t 35.j $4$ $3.074$ \(\Q(\zeta_{12})\) None 385.2.t.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}-\zeta_{12}^{2}q^{4}+\cdots\)
385.2.t.b 385.t 35.j $36$ $3.074$ None 385.2.t.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{6}]$
385.2.t.c 385.t 35.j $40$ $3.074$ None 385.2.t.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(385, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(385, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)