Properties

Label 385.2.bl
Level $385$
Weight $2$
Character orbit 385.bl
Rep. character $\chi_{385}(61,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $256$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 385 = 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 385.bl (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(385, [\chi])\).

Total New Old
Modular forms 416 256 160
Cusp forms 352 256 96
Eisenstein series 64 0 64

Trace form

\( 256 q - 28 q^{4} - 40 q^{8} - 26 q^{9} + 10 q^{14} - 12 q^{15} + 68 q^{16} - 60 q^{17} - 50 q^{18} + 104 q^{22} - 20 q^{23} - 180 q^{24} - 32 q^{25} - 60 q^{26} + 40 q^{29} - 24 q^{33} - 16 q^{36} - 32 q^{37}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(385, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
385.2.bl.a 385.bl 77.n $256$ $3.074$ None 385.2.bl.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{30}]$

Decomposition of \(S_{2}^{\mathrm{old}}(385, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(385, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 2}\)