Properties

Label 380.2.v.c.7.8
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.8
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.31685 + 0.515654i) q^{2} +(0.129961 - 0.485021i) q^{3} +(1.46820 - 1.35808i) q^{4} +(2.06245 - 0.863894i) q^{5} +(0.0789637 + 0.705716i) q^{6} +(-2.26251 + 2.26251i) q^{7} +(-1.23310 + 2.54548i) q^{8} +(2.37972 + 1.37393i) q^{9} +O(q^{10})\) \(q+(-1.31685 + 0.515654i) q^{2} +(0.129961 - 0.485021i) q^{3} +(1.46820 - 1.35808i) q^{4} +(2.06245 - 0.863894i) q^{5} +(0.0789637 + 0.705716i) q^{6} +(-2.26251 + 2.26251i) q^{7} +(-1.23310 + 2.54548i) q^{8} +(2.37972 + 1.37393i) q^{9} +(-2.27047 + 2.20113i) q^{10} +1.89777i q^{11} +(-0.467889 - 0.888605i) q^{12} +(0.275985 + 1.02999i) q^{13} +(1.81272 - 4.14607i) q^{14} +(-0.150969 - 1.11260i) q^{15} +(0.311228 - 3.98787i) q^{16} +(-0.590696 + 2.20451i) q^{17} +(-3.84222 - 0.582153i) q^{18} +(4.27916 - 0.829930i) q^{19} +(1.85485 - 4.06934i) q^{20} +(0.803327 + 1.39140i) q^{21} +(-0.978595 - 2.49909i) q^{22} +(4.67925 - 1.25380i) q^{23} +(1.07435 + 0.928893i) q^{24} +(3.50737 - 3.56347i) q^{25} +(-0.894549 - 1.21403i) q^{26} +(2.04084 - 2.04084i) q^{27} +(-0.249146 + 6.39450i) q^{28} +(-3.22266 - 1.86060i) q^{29} +(0.772522 + 1.38728i) q^{30} +0.974031i q^{31} +(1.64652 + 5.41193i) q^{32} +(0.920459 + 0.246636i) q^{33} +(-0.358905 - 3.20761i) q^{34} +(-2.71174 + 6.62088i) q^{35} +(5.35982 - 1.21465i) q^{36} +(-2.22733 - 2.22733i) q^{37} +(-5.20707 + 3.29946i) q^{38} +0.535433 q^{39} +(-0.344186 + 6.31518i) q^{40} +(5.35585 + 9.27661i) q^{41} +(-1.77535 - 1.41803i) q^{42} +(0.544902 - 2.03360i) q^{43} +(2.57733 + 2.78631i) q^{44} +(6.09498 + 0.777835i) q^{45} +(-5.51536 + 4.06395i) q^{46} +(2.40784 + 8.98617i) q^{47} +(-1.89375 - 0.669220i) q^{48} -3.23791i q^{49} +(-2.78117 + 6.50116i) q^{50} +(0.992464 + 0.572999i) q^{51} +(1.80401 + 1.13742i) q^{52} +(-0.980783 - 3.66033i) q^{53} +(-1.63511 + 3.73985i) q^{54} +(1.63947 + 3.91405i) q^{55} +(-2.96926 - 8.54908i) q^{56} +(0.153590 - 2.18334i) q^{57} +(5.20320 + 0.788361i) q^{58} +(-2.52524 - 4.37385i) q^{59} +(-1.73266 - 1.42849i) q^{60} +(6.56975 - 11.3791i) q^{61} +(-0.502264 - 1.28266i) q^{62} +(-8.49268 + 2.27561i) q^{63} +(-4.95891 - 6.27767i) q^{64} +(1.45900 + 1.88588i) q^{65} +(-1.33929 + 0.149855i) q^{66} +(-0.445835 - 1.66388i) q^{67} +(2.12664 + 4.03887i) q^{68} -2.43248i q^{69} +(0.156874 - 10.1170i) q^{70} +(-4.55538 + 2.63005i) q^{71} +(-6.43176 + 4.36333i) q^{72} +(-13.2475 - 3.54966i) q^{73} +(4.08160 + 1.78453i) q^{74} +(-1.27254 - 2.16426i) q^{75} +(5.15556 - 7.02995i) q^{76} +(-4.29373 - 4.29373i) q^{77} +(-0.705086 + 0.276098i) q^{78} +(-5.65657 - 9.79747i) q^{79} +(-2.80321 - 8.49365i) q^{80} +(3.39718 + 5.88409i) q^{81} +(-11.8364 - 9.45415i) q^{82} +(9.42884 + 9.42884i) q^{83} +(3.06908 + 0.951876i) q^{84} +(0.686182 + 5.05698i) q^{85} +(0.331080 + 2.95893i) q^{86} +(-1.32125 + 1.32125i) q^{87} +(-4.83074 - 2.34015i) q^{88} +(-6.74303 - 3.89309i) q^{89} +(-8.42728 + 2.11861i) q^{90} +(-2.95478 - 1.70594i) q^{91} +(5.16732 - 8.19564i) q^{92} +(0.472425 + 0.126586i) q^{93} +(-7.80453 - 10.5919i) q^{94} +(8.10857 - 5.40843i) q^{95} +(2.83888 - 0.0952589i) q^{96} +(3.47557 - 12.9710i) q^{97} +(1.66964 + 4.26385i) q^{98} +(-2.60741 + 4.51617i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.31685 + 0.515654i −0.931155 + 0.364623i
\(3\) 0.129961 0.485021i 0.0750330 0.280027i −0.918208 0.396099i \(-0.870364\pi\)
0.993241 + 0.116072i \(0.0370304\pi\)
\(4\) 1.46820 1.35808i 0.734100 0.679041i
\(5\) 2.06245 0.863894i 0.922354 0.386345i
\(6\) 0.0789637 + 0.705716i 0.0322368 + 0.288107i
\(7\) −2.26251 + 2.26251i −0.855149 + 0.855149i −0.990762 0.135613i \(-0.956700\pi\)
0.135613 + 0.990762i \(0.456700\pi\)
\(8\) −1.23310 + 2.54548i −0.435968 + 0.899962i
\(9\) 2.37972 + 1.37393i 0.793240 + 0.457978i
\(10\) −2.27047 + 2.20113i −0.717985 + 0.696059i
\(11\) 1.89777i 0.572200i 0.958200 + 0.286100i \(0.0923589\pi\)
−0.958200 + 0.286100i \(0.907641\pi\)
\(12\) −0.467889 0.888605i −0.135068 0.256518i
\(13\) 0.275985 + 1.02999i 0.0765444 + 0.285667i 0.993579 0.113140i \(-0.0360909\pi\)
−0.917035 + 0.398807i \(0.869424\pi\)
\(14\) 1.81272 4.14607i 0.484470 1.10808i
\(15\) −0.150969 1.11260i −0.0389801 0.287273i
\(16\) 0.311228 3.98787i 0.0778070 0.996968i
\(17\) −0.590696 + 2.20451i −0.143265 + 0.534671i 0.856562 + 0.516045i \(0.172596\pi\)
−0.999827 + 0.0186269i \(0.994071\pi\)
\(18\) −3.84222 0.582153i −0.905619 0.137215i
\(19\) 4.27916 0.829930i 0.981707 0.190399i
\(20\) 1.85485 4.06934i 0.414756 0.909932i
\(21\) 0.803327 + 1.39140i 0.175300 + 0.303629i
\(22\) −0.978595 2.49909i −0.208637 0.532807i
\(23\) 4.67925 1.25380i 0.975691 0.261436i 0.264462 0.964396i \(-0.414806\pi\)
0.711229 + 0.702960i \(0.248139\pi\)
\(24\) 1.07435 + 0.928893i 0.219302 + 0.189610i
\(25\) 3.50737 3.56347i 0.701475 0.712694i
\(26\) −0.894549 1.21403i −0.175436 0.238091i
\(27\) 2.04084 2.04084i 0.392759 0.392759i
\(28\) −0.249146 + 6.39450i −0.0470842 + 1.20845i
\(29\) −3.22266 1.86060i −0.598433 0.345505i 0.169992 0.985445i \(-0.445626\pi\)
−0.768425 + 0.639940i \(0.778959\pi\)
\(30\) 0.772522 + 1.38728i 0.141043 + 0.253282i
\(31\) 0.974031i 0.174941i 0.996167 + 0.0874706i \(0.0278784\pi\)
−0.996167 + 0.0874706i \(0.972122\pi\)
\(32\) 1.64652 + 5.41193i 0.291067 + 0.956703i
\(33\) 0.920459 + 0.246636i 0.160231 + 0.0429338i
\(34\) −0.358905 3.20761i −0.0615516 0.550100i
\(35\) −2.71174 + 6.62088i −0.458367 + 1.11913i
\(36\) 5.35982 1.21465i 0.893304 0.202441i
\(37\) −2.22733 2.22733i −0.366171 0.366171i 0.499908 0.866079i \(-0.333367\pi\)
−0.866079 + 0.499908i \(0.833367\pi\)
\(38\) −5.20707 + 3.29946i −0.844698 + 0.535244i
\(39\) 0.535433 0.0857379
\(40\) −0.344186 + 6.31518i −0.0544206 + 0.998518i
\(41\) 5.35585 + 9.27661i 0.836444 + 1.44876i 0.892850 + 0.450355i \(0.148703\pi\)
−0.0564061 + 0.998408i \(0.517964\pi\)
\(42\) −1.77535 1.41803i −0.273942 0.218807i
\(43\) 0.544902 2.03360i 0.0830967 0.310121i −0.911850 0.410523i \(-0.865346\pi\)
0.994947 + 0.100402i \(0.0320128\pi\)
\(44\) 2.57733 + 2.78631i 0.388547 + 0.420052i
\(45\) 6.09498 + 0.777835i 0.908586 + 0.115953i
\(46\) −5.51536 + 4.06395i −0.813195 + 0.599197i
\(47\) 2.40784 + 8.98617i 0.351219 + 1.31077i 0.885176 + 0.465256i \(0.154038\pi\)
−0.533957 + 0.845512i \(0.679296\pi\)
\(48\) −1.89375 0.669220i −0.273340 0.0965936i
\(49\) 3.23791i 0.462559i
\(50\) −2.78117 + 6.50116i −0.393317 + 0.919403i
\(51\) 0.992464 + 0.572999i 0.138973 + 0.0802360i
\(52\) 1.80401 + 1.13742i 0.250171 + 0.157732i
\(53\) −0.980783 3.66033i −0.134721 0.502785i −0.999999 0.00149297i \(-0.999525\pi\)
0.865278 0.501292i \(-0.167142\pi\)
\(54\) −1.63511 + 3.73985i −0.222511 + 0.508929i
\(55\) 1.63947 + 3.91405i 0.221067 + 0.527771i
\(56\) −2.96926 8.54908i −0.396784 1.14242i
\(57\) 0.153590 2.18334i 0.0203435 0.289190i
\(58\) 5.20320 + 0.788361i 0.683213 + 0.103517i
\(59\) −2.52524 4.37385i −0.328759 0.569427i 0.653507 0.756920i \(-0.273297\pi\)
−0.982266 + 0.187494i \(0.939964\pi\)
\(60\) −1.73266 1.42849i −0.223685 0.184418i
\(61\) 6.56975 11.3791i 0.841170 1.45695i −0.0477367 0.998860i \(-0.515201\pi\)
0.888906 0.458089i \(-0.151466\pi\)
\(62\) −0.502264 1.28266i −0.0637875 0.162897i
\(63\) −8.49268 + 2.27561i −1.06998 + 0.286700i
\(64\) −4.95891 6.27767i −0.619864 0.784709i
\(65\) 1.45900 + 1.88588i 0.180967 + 0.233914i
\(66\) −1.33929 + 0.149855i −0.164855 + 0.0184459i
\(67\) −0.445835 1.66388i −0.0544674 0.203275i 0.933330 0.359020i \(-0.116889\pi\)
−0.987797 + 0.155745i \(0.950222\pi\)
\(68\) 2.12664 + 4.03887i 0.257893 + 0.489785i
\(69\) 2.43248i 0.292836i
\(70\) 0.156874 10.1170i 0.0187500 1.20922i
\(71\) −4.55538 + 2.63005i −0.540624 + 0.312130i −0.745332 0.666694i \(-0.767709\pi\)
0.204708 + 0.978823i \(0.434376\pi\)
\(72\) −6.43176 + 4.36333i −0.757990 + 0.514223i
\(73\) −13.2475 3.54966i −1.55051 0.415457i −0.620863 0.783919i \(-0.713218\pi\)
−0.929643 + 0.368463i \(0.879884\pi\)
\(74\) 4.08160 + 1.78453i 0.474476 + 0.207448i
\(75\) −1.27254 2.16426i −0.146940 0.249907i
\(76\) 5.15556 7.02995i 0.591383 0.806391i
\(77\) −4.29373 4.29373i −0.489316 0.489316i
\(78\) −0.705086 + 0.276098i −0.0798353 + 0.0312620i
\(79\) −5.65657 9.79747i −0.636414 1.10230i −0.986214 0.165477i \(-0.947084\pi\)
0.349800 0.936824i \(-0.386250\pi\)
\(80\) −2.80321 8.49365i −0.313408 0.949618i
\(81\) 3.39718 + 5.88409i 0.377464 + 0.653787i
\(82\) −11.8364 9.45415i −1.30711 1.04404i
\(83\) 9.42884 + 9.42884i 1.03495 + 1.03495i 0.999367 + 0.0355829i \(0.0113288\pi\)
0.0355829 + 0.999367i \(0.488671\pi\)
\(84\) 3.06908 + 0.951876i 0.334865 + 0.103858i
\(85\) 0.686182 + 5.05698i 0.0744269 + 0.548506i
\(86\) 0.331080 + 2.95893i 0.0357013 + 0.319070i
\(87\) −1.32125 + 1.32125i −0.141653 + 0.141653i
\(88\) −4.83074 2.34015i −0.514958 0.249461i
\(89\) −6.74303 3.89309i −0.714760 0.412667i 0.0980611 0.995180i \(-0.468736\pi\)
−0.812821 + 0.582514i \(0.802069\pi\)
\(90\) −8.42728 + 2.11861i −0.888314 + 0.223321i
\(91\) −2.95478 1.70594i −0.309745 0.178831i
\(92\) 5.16732 8.19564i 0.538730 0.854454i
\(93\) 0.472425 + 0.126586i 0.0489882 + 0.0131264i
\(94\) −7.80453 10.5919i −0.804975 1.09247i
\(95\) 8.10857 5.40843i 0.831922 0.554893i
\(96\) 2.83888 0.0952589i 0.289742 0.00972232i
\(97\) 3.47557 12.9710i 0.352891 1.31701i −0.530227 0.847856i \(-0.677893\pi\)
0.883118 0.469151i \(-0.155440\pi\)
\(98\) 1.66964 + 4.26385i 0.168660 + 0.430714i
\(99\) −2.60741 + 4.51617i −0.262055 + 0.453892i
\(100\) 0.310043 9.99519i 0.0310043 0.999519i
\(101\) −3.00657 + 5.20754i −0.299165 + 0.518169i −0.975945 0.218016i \(-0.930041\pi\)
0.676780 + 0.736185i \(0.263375\pi\)
\(102\) −1.60240 0.242787i −0.158661 0.0240395i
\(103\) −8.86985 8.86985i −0.873973 0.873973i 0.118930 0.992903i \(-0.462054\pi\)
−0.992903 + 0.118930i \(0.962054\pi\)
\(104\) −2.96213 0.567570i −0.290461 0.0556548i
\(105\) 2.85884 + 2.17570i 0.278995 + 0.212327i
\(106\) 3.17901 + 4.31437i 0.308773 + 0.419049i
\(107\) 2.71714 2.71714i 0.262676 0.262676i −0.563465 0.826140i \(-0.690532\pi\)
0.826140 + 0.563465i \(0.190532\pi\)
\(108\) 0.224735 5.76798i 0.0216252 0.555024i
\(109\) −6.30383 + 3.63952i −0.603797 + 0.348602i −0.770534 0.637399i \(-0.780010\pi\)
0.166737 + 0.986001i \(0.446677\pi\)
\(110\) −4.17724 4.30883i −0.398285 0.410831i
\(111\) −1.36977 + 0.790836i −0.130013 + 0.0750628i
\(112\) 8.31845 + 9.72677i 0.786020 + 0.919093i
\(113\) −9.43738 + 9.43738i −0.887794 + 0.887794i −0.994311 0.106517i \(-0.966030\pi\)
0.106517 + 0.994311i \(0.466030\pi\)
\(114\) 0.923593 + 2.95434i 0.0865024 + 0.276699i
\(115\) 8.56755 6.62828i 0.798929 0.618090i
\(116\) −7.25836 + 1.64490i −0.673922 + 0.152725i
\(117\) −0.758368 + 2.83027i −0.0701112 + 0.261659i
\(118\) 5.58077 + 4.45756i 0.513751 + 0.410352i
\(119\) −3.65127 6.32418i −0.334711 0.579736i
\(120\) 3.01826 + 0.987664i 0.275529 + 0.0901610i
\(121\) 7.39846 0.672587
\(122\) −2.78369 + 18.3724i −0.252023 + 1.66336i
\(123\) 5.19540 1.39210i 0.468453 0.125522i
\(124\) 1.32281 + 1.43007i 0.118792 + 0.128424i
\(125\) 4.15531 10.3795i 0.371662 0.928368i
\(126\) 10.0102 7.37593i 0.891778 0.657100i
\(127\) 3.10284 + 11.5800i 0.275333 + 1.02756i 0.955618 + 0.294608i \(0.0951892\pi\)
−0.680285 + 0.732947i \(0.738144\pi\)
\(128\) 9.76727 + 5.70968i 0.863313 + 0.504670i
\(129\) −0.915523 0.528577i −0.0806073 0.0465386i
\(130\) −2.89375 1.73108i −0.253799 0.151825i
\(131\) −9.72382 + 5.61405i −0.849574 + 0.490502i −0.860507 0.509438i \(-0.829853\pi\)
0.0109329 + 0.999940i \(0.496520\pi\)
\(132\) 1.68637 0.887947i 0.146780 0.0772858i
\(133\) −7.80392 + 11.5594i −0.676686 + 1.00232i
\(134\) 1.44508 + 1.96119i 0.124836 + 0.169421i
\(135\) 2.44605 5.97218i 0.210522 0.514004i
\(136\) −4.88313 4.22199i −0.418725 0.362032i
\(137\) −7.73766 + 2.07330i −0.661073 + 0.177134i −0.573730 0.819044i \(-0.694504\pi\)
−0.0873426 + 0.996178i \(0.527837\pi\)
\(138\) 1.25432 + 3.20322i 0.106775 + 0.272676i
\(139\) −1.78951 + 3.09952i −0.151784 + 0.262897i −0.931883 0.362758i \(-0.881835\pi\)
0.780099 + 0.625656i \(0.215168\pi\)
\(140\) 5.01032 + 13.4035i 0.423449 + 1.13281i
\(141\) 4.67140 0.393403
\(142\) 4.64257 5.81239i 0.389596 0.487765i
\(143\) −1.95468 + 0.523756i −0.163459 + 0.0437987i
\(144\) 6.21971 9.06242i 0.518309 0.755202i
\(145\) −8.25393 1.05336i −0.685452 0.0874767i
\(146\) 19.2754 2.15676i 1.59525 0.178495i
\(147\) −1.57046 0.420802i −0.129529 0.0347072i
\(148\) −6.29507 0.245272i −0.517451 0.0201612i
\(149\) −7.13912 + 4.12177i −0.584860 + 0.337669i −0.763062 0.646325i \(-0.776305\pi\)
0.178203 + 0.983994i \(0.442972\pi\)
\(150\) 2.79175 + 2.19382i 0.227946 + 0.179125i
\(151\) 5.47651i 0.445672i −0.974856 0.222836i \(-0.928469\pi\)
0.974856 0.222836i \(-0.0715314\pi\)
\(152\) −3.16408 + 11.9159i −0.256641 + 0.966507i
\(153\) −4.43453 + 4.43453i −0.358511 + 0.358511i
\(154\) 7.86829 + 3.44013i 0.634045 + 0.277213i
\(155\) 0.841460 + 2.00889i 0.0675877 + 0.161358i
\(156\) 0.786123 0.727162i 0.0629402 0.0582195i
\(157\) 5.09994 19.0332i 0.407019 1.51902i −0.393282 0.919418i \(-0.628660\pi\)
0.800301 0.599598i \(-0.204673\pi\)
\(158\) 12.5010 + 9.98498i 0.994524 + 0.794363i
\(159\) −1.90280 −0.150902
\(160\) 8.07120 + 9.73939i 0.638084 + 0.769966i
\(161\) −7.75012 + 13.4236i −0.610795 + 1.05793i
\(162\) −7.50774 5.99670i −0.589864 0.471146i
\(163\) −5.00934 5.00934i −0.392362 0.392362i 0.483167 0.875528i \(-0.339487\pi\)
−0.875528 + 0.483167i \(0.839487\pi\)
\(164\) 20.4619 + 6.34624i 1.59780 + 0.495558i
\(165\) 2.11146 0.286505i 0.164377 0.0223044i
\(166\) −17.2784 7.55437i −1.34107 0.586333i
\(167\) −6.32345 23.5994i −0.489323 1.82618i −0.559749 0.828662i \(-0.689103\pi\)
0.0704260 0.997517i \(-0.477564\pi\)
\(168\) −4.53237 + 0.329107i −0.349680 + 0.0253912i
\(169\) 10.2736 5.93148i 0.790279 0.456268i
\(170\) −3.51125 6.30546i −0.269301 0.483607i
\(171\) 11.3235 + 3.90428i 0.865928 + 0.298567i
\(172\) −1.96177 3.72576i −0.149584 0.284086i
\(173\) −11.4709 3.07362i −0.872118 0.233683i −0.205115 0.978738i \(-0.565757\pi\)
−0.667003 + 0.745055i \(0.732423\pi\)
\(174\) 1.05858 2.42120i 0.0802510 0.183551i
\(175\) 0.126923 + 15.9979i 0.00959451 + 1.20933i
\(176\) 7.56807 + 0.590640i 0.570465 + 0.0445212i
\(177\) −2.44959 + 0.656366i −0.184123 + 0.0493355i
\(178\) 10.8871 + 1.64955i 0.816020 + 0.123639i
\(179\) 9.58704 0.716569 0.358285 0.933612i \(-0.383362\pi\)
0.358285 + 0.933612i \(0.383362\pi\)
\(180\) 10.0050 7.13546i 0.745730 0.531846i
\(181\) −10.0999 + 17.4935i −0.750720 + 1.30028i 0.196755 + 0.980453i \(0.436960\pi\)
−0.947474 + 0.319832i \(0.896374\pi\)
\(182\) 4.77068 + 0.722830i 0.353627 + 0.0535797i
\(183\) −4.66531 4.66531i −0.344869 0.344869i
\(184\) −2.57848 + 13.4570i −0.190088 + 0.992063i
\(185\) −6.51793 2.66957i −0.479208 0.196271i
\(186\) −0.687389 + 0.0769132i −0.0504018 + 0.00563955i
\(187\) −4.18365 1.12101i −0.305939 0.0819761i
\(188\) 15.7391 + 9.92347i 1.14790 + 0.723743i
\(189\) 9.23483i 0.671735i
\(190\) −7.88891 + 11.3033i −0.572322 + 0.820029i
\(191\) 25.1118i 1.81703i −0.417858 0.908513i \(-0.637219\pi\)
0.417858 0.908513i \(-0.362781\pi\)
\(192\) −3.68927 + 1.58932i −0.266250 + 0.114700i
\(193\) 3.04081 + 0.814783i 0.218883 + 0.0586494i 0.366594 0.930381i \(-0.380524\pi\)
−0.147711 + 0.989031i \(0.547191\pi\)
\(194\) 2.11174 + 18.8731i 0.151614 + 1.35501i
\(195\) 1.10430 0.462557i 0.0790807 0.0331244i
\(196\) −4.39735 4.75391i −0.314097 0.339565i
\(197\) 11.0413 + 11.0413i 0.786657 + 0.786657i 0.980945 0.194288i \(-0.0622396\pi\)
−0.194288 + 0.980945i \(0.562240\pi\)
\(198\) 1.10479 7.29165i 0.0785142 0.518195i
\(199\) −6.23618 + 10.8014i −0.442071 + 0.765690i −0.997843 0.0656451i \(-0.979089\pi\)
0.555772 + 0.831335i \(0.312423\pi\)
\(200\) 4.74578 + 13.3221i 0.335578 + 0.942013i
\(201\) −0.864956 −0.0610093
\(202\) 1.27392 8.40791i 0.0896329 0.591578i
\(203\) 11.5009 3.08167i 0.807208 0.216291i
\(204\) 2.23532 0.506569i 0.156503 0.0354669i
\(205\) 19.0602 + 14.5056i 1.33122 + 1.01312i
\(206\) 16.2541 + 7.10651i 1.13247 + 0.495134i
\(207\) 12.8580 + 3.44528i 0.893689 + 0.239463i
\(208\) 4.19336 0.780030i 0.290757 0.0540854i
\(209\) 1.57502 + 8.12087i 0.108946 + 0.561732i
\(210\) −4.88659 1.39091i −0.337207 0.0959817i
\(211\) −12.5699 + 7.25721i −0.865344 + 0.499607i −0.865798 0.500393i \(-0.833189\pi\)
0.000454091 1.00000i \(0.499855\pi\)
\(212\) −6.41102 4.04212i −0.440311 0.277614i
\(213\) 0.683608 + 2.55126i 0.0468400 + 0.174809i
\(214\) −2.17696 + 4.97917i −0.148814 + 0.340369i
\(215\) −0.632985 4.66493i −0.0431692 0.318146i
\(216\) 2.67834 + 7.71146i 0.182238 + 0.524699i
\(217\) −2.20376 2.20376i −0.149601 0.149601i
\(218\) 6.42448 8.04330i 0.435120 0.544761i
\(219\) −3.44332 + 5.96401i −0.232678 + 0.403010i
\(220\) 7.72268 + 3.52008i 0.520663 + 0.237324i
\(221\) −2.43364 −0.163704
\(222\) 1.39598 1.74774i 0.0936923 0.117301i
\(223\) −1.13195 + 4.22450i −0.0758011 + 0.282894i −0.993414 0.114582i \(-0.963447\pi\)
0.917613 + 0.397476i \(0.130114\pi\)
\(224\) −15.9698 8.51927i −1.06703 0.569218i
\(225\) 13.2425 3.66117i 0.882836 0.244078i
\(226\) 7.56121 17.2941i 0.502964 1.15038i
\(227\) 15.1932 15.1932i 1.00841 1.00841i 0.00844289 0.999964i \(-0.497313\pi\)
0.999964 0.00844289i \(-0.00268749\pi\)
\(228\) −2.73965 3.41417i −0.181438 0.226109i
\(229\) 4.34750i 0.287291i 0.989629 + 0.143646i \(0.0458825\pi\)
−0.989629 + 0.143646i \(0.954117\pi\)
\(230\) −7.86430 + 13.1464i −0.518557 + 0.866845i
\(231\) −2.64057 + 1.52453i −0.173736 + 0.100307i
\(232\) 8.71000 5.90889i 0.571839 0.387938i
\(233\) −0.965982 0.258834i −0.0632836 0.0169568i 0.227038 0.973886i \(-0.427096\pi\)
−0.290322 + 0.956929i \(0.593762\pi\)
\(234\) −0.460782 4.11810i −0.0301222 0.269209i
\(235\) 12.7291 + 16.4534i 0.830357 + 1.07330i
\(236\) −9.64761 2.99220i −0.628006 0.194776i
\(237\) −5.48711 + 1.47027i −0.356426 + 0.0955040i
\(238\) 8.06927 + 6.44522i 0.523053 + 0.417781i
\(239\) −23.7717 −1.53766 −0.768832 0.639451i \(-0.779162\pi\)
−0.768832 + 0.639451i \(0.779162\pi\)
\(240\) −4.48390 + 0.255773i −0.289435 + 0.0165101i
\(241\) 7.74595 13.4164i 0.498961 0.864225i −0.501039 0.865425i \(-0.667049\pi\)
0.999999 + 0.00119972i \(0.000381883\pi\)
\(242\) −9.74268 + 3.81505i −0.626283 + 0.245241i
\(243\) 11.6589 3.12399i 0.747919 0.200404i
\(244\) −5.80809 25.6291i −0.371825 1.64074i
\(245\) −2.79722 6.67802i −0.178708 0.426643i
\(246\) −6.12373 + 4.51222i −0.390435 + 0.287689i
\(247\) 2.03580 + 4.17844i 0.129535 + 0.265868i
\(248\) −2.47937 1.20108i −0.157440 0.0762687i
\(249\) 5.79856 3.34780i 0.367469 0.212158i
\(250\) −0.119707 + 15.8109i −0.00757095 + 0.999971i
\(251\) 4.30970 + 2.48821i 0.272026 + 0.157054i 0.629808 0.776751i \(-0.283134\pi\)
−0.357782 + 0.933805i \(0.616467\pi\)
\(252\) −9.37850 + 14.8748i −0.590790 + 0.937025i
\(253\) 2.37943 + 8.88015i 0.149593 + 0.558290i
\(254\) −10.0572 13.6491i −0.631048 0.856421i
\(255\) 2.54192 + 0.324397i 0.159181 + 0.0203145i
\(256\) −15.8063 2.48228i −0.987892 0.155142i
\(257\) 2.58901 0.693723i 0.161498 0.0432732i −0.177164 0.984181i \(-0.556692\pi\)
0.338662 + 0.940908i \(0.390026\pi\)
\(258\) 1.47817 + 0.223965i 0.0920269 + 0.0139434i
\(259\) 10.0787 0.626261
\(260\) 4.70328 + 0.787396i 0.291685 + 0.0488322i
\(261\) −5.11269 8.85543i −0.316467 0.548138i
\(262\) 9.90993 12.4070i 0.612237 0.766508i
\(263\) 5.19951 19.4048i 0.320615 1.19655i −0.598031 0.801473i \(-0.704050\pi\)
0.918647 0.395080i \(-0.129283\pi\)
\(264\) −1.76283 + 2.03888i −0.108495 + 0.125484i
\(265\) −5.18495 6.70195i −0.318509 0.411697i
\(266\) 4.31597 19.2461i 0.264629 1.18006i
\(267\) −2.76456 + 2.76456i −0.169188 + 0.169188i
\(268\) −2.91426 1.83743i −0.178017 0.112239i
\(269\) −13.6757 + 7.89569i −0.833824 + 0.481408i −0.855160 0.518364i \(-0.826541\pi\)
0.0213362 + 0.999772i \(0.493208\pi\)
\(270\) −0.141503 + 9.12580i −0.00861163 + 0.555378i
\(271\) −25.9019 + 14.9545i −1.57343 + 0.908420i −0.577685 + 0.816260i \(0.696044\pi\)
−0.995744 + 0.0921601i \(0.970623\pi\)
\(272\) 8.60745 + 3.04172i 0.521904 + 0.184432i
\(273\) −1.21142 + 1.21142i −0.0733187 + 0.0733187i
\(274\) 9.12025 6.72019i 0.550974 0.405981i
\(275\) 6.76266 + 6.65619i 0.407804 + 0.401384i
\(276\) −3.30351 3.57137i −0.198848 0.214971i
\(277\) 3.71092 + 3.71092i 0.222968 + 0.222968i 0.809747 0.586779i \(-0.199604\pi\)
−0.586779 + 0.809747i \(0.699604\pi\)
\(278\) 0.758237 5.00437i 0.0454760 0.300142i
\(279\) −1.33825 + 2.31792i −0.0801191 + 0.138770i
\(280\) −13.5094 15.0669i −0.807344 0.900419i
\(281\) −3.85295 + 6.67351i −0.229848 + 0.398108i −0.957763 0.287559i \(-0.907156\pi\)
0.727915 + 0.685667i \(0.240490\pi\)
\(282\) −6.15155 + 2.40883i −0.366320 + 0.143444i
\(283\) 4.90863 18.3193i 0.291788 1.08897i −0.651947 0.758264i \(-0.726048\pi\)
0.943735 0.330702i \(-0.107286\pi\)
\(284\) −3.11639 + 10.0480i −0.184924 + 0.596241i
\(285\) −1.56940 4.63571i −0.0929634 0.274596i
\(286\) 2.30395 1.69765i 0.136236 0.100384i
\(287\) −33.1061 8.87075i −1.95419 0.523624i
\(288\) −3.51736 + 15.1411i −0.207262 + 0.892197i
\(289\) 10.2115 + 5.89561i 0.600677 + 0.346801i
\(290\) 11.4124 2.86906i 0.670158 0.168477i
\(291\) −5.83952 3.37145i −0.342319 0.197638i
\(292\) −24.2708 + 12.7796i −1.42034 + 0.747870i
\(293\) 19.8931 19.8931i 1.16217 1.16217i 0.178170 0.984000i \(-0.442982\pi\)
0.984000 0.178170i \(-0.0570177\pi\)
\(294\) 2.28505 0.255678i 0.133267 0.0149114i
\(295\) −8.98672 6.83929i −0.523227 0.398199i
\(296\) 8.41615 2.92309i 0.489179 0.169901i
\(297\) 3.87304 + 3.87304i 0.224737 + 0.224737i
\(298\) 7.27576 9.10909i 0.421473 0.527675i
\(299\) 2.58280 + 4.47355i 0.149367 + 0.258712i
\(300\) −4.80758 1.44936i −0.277566 0.0836789i
\(301\) 3.36820 + 5.83389i 0.194140 + 0.336260i
\(302\) 2.82399 + 7.21175i 0.162502 + 0.414990i
\(303\) 2.13503 + 2.13503i 0.122654 + 0.122654i
\(304\) −1.97786 17.3231i −0.113438 0.993545i
\(305\) 3.71938 29.1444i 0.212971 1.66880i
\(306\) 3.55294 8.12632i 0.203108 0.464551i
\(307\) 9.47145 + 2.53787i 0.540564 + 0.144844i 0.518762 0.854919i \(-0.326393\pi\)
0.0218020 + 0.999762i \(0.493060\pi\)
\(308\) −12.1353 0.472822i −0.691473 0.0269416i
\(309\) −5.45480 + 3.14933i −0.310313 + 0.179159i
\(310\) −2.14397 2.21151i −0.121769 0.125605i
\(311\) 14.9469i 0.847558i −0.905766 0.423779i \(-0.860703\pi\)
0.905766 0.423779i \(-0.139297\pi\)
\(312\) −0.660244 + 1.36293i −0.0373790 + 0.0771609i
\(313\) −6.16849 23.0211i −0.348664 1.30123i −0.888273 0.459315i \(-0.848095\pi\)
0.539610 0.841915i \(-0.318572\pi\)
\(314\) 3.09870 + 27.6937i 0.174870 + 1.56285i
\(315\) −15.5498 + 12.0301i −0.876133 + 0.677819i
\(316\) −21.6107 6.70257i −1.21570 0.377049i
\(317\) 12.2806 3.29058i 0.689749 0.184818i 0.103114 0.994670i \(-0.467119\pi\)
0.586634 + 0.809852i \(0.300453\pi\)
\(318\) 2.50571 0.981188i 0.140513 0.0550223i
\(319\) 3.53100 6.11587i 0.197698 0.342423i
\(320\) −15.6507 8.66339i −0.874903 0.484298i
\(321\) −0.964746 1.67099i −0.0538469 0.0932655i
\(322\) 3.28382 21.6733i 0.183000 1.20780i
\(323\) −0.698096 + 9.92368i −0.0388431 + 0.552168i
\(324\) 12.9788 + 4.02537i 0.721045 + 0.223632i
\(325\) 4.63832 + 2.62909i 0.257287 + 0.145836i
\(326\) 9.17965 + 4.01348i 0.508414 + 0.222286i
\(327\) 0.945990 + 3.53048i 0.0523133 + 0.195236i
\(328\) −30.2177 + 2.19419i −1.66849 + 0.121154i
\(329\) −25.7791 14.8836i −1.42125 0.820557i
\(330\) −2.63275 + 1.46607i −0.144928 + 0.0807046i
\(331\) 24.7559i 1.36071i 0.732883 + 0.680355i \(0.238174\pi\)
−0.732883 + 0.680355i \(0.761826\pi\)
\(332\) 26.6486 + 1.03830i 1.46253 + 0.0569839i
\(333\) −2.24022 8.36063i −0.122763 0.458160i
\(334\) 20.4962 + 27.8163i 1.12150 + 1.52204i
\(335\) −2.35693 3.04651i −0.128773 0.166448i
\(336\) 5.79876 2.77052i 0.316348 0.151144i
\(337\) −8.18880 + 30.5610i −0.446072 + 1.66476i 0.267017 + 0.963692i \(0.413962\pi\)
−0.713090 + 0.701073i \(0.752705\pi\)
\(338\) −10.4703 + 13.1085i −0.569507 + 0.713010i
\(339\) 3.35083 + 5.80381i 0.181992 + 0.315220i
\(340\) 7.87524 + 6.49277i 0.427095 + 0.352120i
\(341\) −1.84849 −0.100101
\(342\) −16.9246 + 0.697645i −0.915178 + 0.0377243i
\(343\) −8.51176 8.51176i −0.459592 0.459592i
\(344\) 4.50457 + 3.89467i 0.242870 + 0.209987i
\(345\) −2.10140 5.01686i −0.113136 0.270099i
\(346\) 16.6904 1.86752i 0.897284 0.100399i
\(347\) 21.0984 + 5.65329i 1.13262 + 0.303484i 0.775980 0.630758i \(-0.217256\pi\)
0.356639 + 0.934242i \(0.383922\pi\)
\(348\) −0.145495 + 3.73423i −0.00779936 + 0.200176i
\(349\) 19.8794i 1.06412i −0.846706 0.532061i \(-0.821418\pi\)
0.846706 0.532061i \(-0.178582\pi\)
\(350\) −8.41651 21.0014i −0.449881 1.12257i
\(351\) 2.66528 + 1.53880i 0.142262 + 0.0821350i
\(352\) −10.2706 + 3.12473i −0.547425 + 0.166548i
\(353\) 7.24313 7.24313i 0.385513 0.385513i −0.487571 0.873084i \(-0.662117\pi\)
0.873084 + 0.487571i \(0.162117\pi\)
\(354\) 2.88729 2.12748i 0.153458 0.113074i
\(355\) −7.12315 + 9.35971i −0.378057 + 0.496762i
\(356\) −15.1873 + 3.44175i −0.804923 + 0.182412i
\(357\) −3.54188 + 0.949044i −0.187456 + 0.0502287i
\(358\) −12.6247 + 4.94360i −0.667237 + 0.261277i
\(359\) −13.0529 22.6084i −0.688908 1.19322i −0.972192 0.234187i \(-0.924757\pi\)
0.283284 0.959036i \(-0.408576\pi\)
\(360\) −9.49570 + 14.5555i −0.500467 + 0.767141i
\(361\) 17.6224 7.10281i 0.927496 0.373832i
\(362\) 4.27946 28.2445i 0.224923 1.48450i
\(363\) 0.961511 3.58841i 0.0504662 0.188343i
\(364\) −6.65502 + 1.50816i −0.348818 + 0.0790493i
\(365\) −30.3888 + 4.12347i −1.59062 + 0.215832i
\(366\) 8.54920 + 3.73783i 0.446874 + 0.195380i
\(367\) 0.848098 + 3.16514i 0.0442703 + 0.165219i 0.984522 0.175261i \(-0.0560770\pi\)
−0.940252 + 0.340480i \(0.889410\pi\)
\(368\) −3.54369 19.0505i −0.184728 0.993075i
\(369\) 29.4343i 1.53229i
\(370\) 9.95973 + 0.154434i 0.517782 + 0.00802866i
\(371\) 10.5006 + 6.06251i 0.545163 + 0.314750i
\(372\) 0.865529 0.455739i 0.0448756 0.0236289i
\(373\) 16.8368 16.8368i 0.871778 0.871778i −0.120888 0.992666i \(-0.538574\pi\)
0.992666 + 0.120888i \(0.0385743\pi\)
\(374\) 6.08730 0.681119i 0.314767 0.0352198i
\(375\) −4.49423 3.36434i −0.232081 0.173734i
\(376\) −25.8432 4.95178i −1.33276 0.255369i
\(377\) 1.02700 3.83280i 0.0528930 0.197399i
\(378\) −4.76198 12.1609i −0.244930 0.625490i
\(379\) 34.9937 1.79751 0.898753 0.438455i \(-0.144474\pi\)
0.898753 + 0.438455i \(0.144474\pi\)
\(380\) 4.55992 18.9528i 0.233919 0.972256i
\(381\) 6.01977 0.308402
\(382\) 12.9490 + 33.0685i 0.662529 + 1.69193i
\(383\) −7.03866 + 26.2686i −0.359659 + 1.34226i 0.514861 + 0.857274i \(0.327844\pi\)
−0.874519 + 0.484991i \(0.838823\pi\)
\(384\) 4.03868 3.99529i 0.206098 0.203884i
\(385\) −12.5649 5.14626i −0.640368 0.262278i
\(386\) −4.42445 + 0.495059i −0.225199 + 0.0251979i
\(387\) 4.09074 4.09074i 0.207944 0.207944i
\(388\) −12.5129 23.7642i −0.635244 1.20644i
\(389\) −17.8209 10.2889i −0.903557 0.521669i −0.0252045 0.999682i \(-0.508024\pi\)
−0.878353 + 0.478013i \(0.841357\pi\)
\(390\) −1.21568 + 1.17856i −0.0615585 + 0.0596786i
\(391\) 11.0561i 0.559129i
\(392\) 8.24204 + 3.99268i 0.416286 + 0.201661i
\(393\) 1.45921 + 5.44586i 0.0736076 + 0.274707i
\(394\) −20.2332 8.84623i −1.01933 0.445667i
\(395\) −20.1304 15.3201i −1.01287 0.770837i
\(396\) 2.30512 + 10.1717i 0.115837 + 0.511148i
\(397\) 1.26613 4.72525i 0.0635451 0.237154i −0.926847 0.375438i \(-0.877492\pi\)
0.990393 + 0.138285i \(0.0441589\pi\)
\(398\) 2.64235 17.4395i 0.132449 0.874165i
\(399\) 4.59233 + 5.28733i 0.229904 + 0.264698i
\(400\) −13.1191 15.0960i −0.655954 0.754801i
\(401\) 3.50862 + 6.07711i 0.175212 + 0.303476i 0.940235 0.340527i \(-0.110606\pi\)
−0.765022 + 0.644004i \(0.777272\pi\)
\(402\) 1.13902 0.446019i 0.0568092 0.0222454i
\(403\) −1.00324 + 0.268818i −0.0499750 + 0.0133908i
\(404\) 2.65801 + 11.7289i 0.132241 + 0.583534i
\(405\) 12.0897 + 9.20081i 0.600743 + 0.457192i
\(406\) −13.5560 + 9.98861i −0.672771 + 0.495727i
\(407\) 4.22697 4.22697i 0.209523 0.209523i
\(408\) −2.68237 + 1.81973i −0.132797 + 0.0900900i
\(409\) 15.6881 + 9.05753i 0.775727 + 0.447866i 0.834914 0.550381i \(-0.185517\pi\)
−0.0591868 + 0.998247i \(0.518851\pi\)
\(410\) −32.5793 9.27330i −1.60898 0.457976i
\(411\) 4.02237i 0.198409i
\(412\) −25.0687 0.976742i −1.23505 0.0481206i
\(413\) 15.6093 + 4.18249i 0.768082 + 0.205807i
\(414\) −18.7086 + 2.09334i −0.919477 + 0.102882i
\(415\) 27.5920 + 11.3010i 1.35444 + 0.554742i
\(416\) −5.11981 + 3.18951i −0.251019 + 0.156379i
\(417\) 1.27076 + 1.27076i 0.0622296 + 0.0622296i
\(418\) −6.26163 9.88182i −0.306266 0.483336i
\(419\) 27.0123 1.31964 0.659818 0.751425i \(-0.270633\pi\)
0.659818 + 0.751425i \(0.270633\pi\)
\(420\) 7.15214 0.688171i 0.348989 0.0335793i
\(421\) −3.27161 5.66660i −0.159449 0.276173i 0.775221 0.631690i \(-0.217638\pi\)
−0.934670 + 0.355517i \(0.884305\pi\)
\(422\) 12.8104 16.0384i 0.623602 0.780736i
\(423\) −6.61641 + 24.6928i −0.321701 + 1.20060i
\(424\) 10.5267 + 2.01701i 0.511222 + 0.0979545i
\(425\) 5.78391 + 9.83696i 0.280561 + 0.477162i
\(426\) −2.21578 3.00713i −0.107355 0.145696i
\(427\) 10.8813 + 40.6095i 0.526583 + 1.96523i
\(428\) 0.299209 7.67940i 0.0144628 0.371198i
\(429\) 1.01613i 0.0490592i
\(430\) 3.23904 + 5.81662i 0.156200 + 0.280503i
\(431\) 33.7213 + 19.4690i 1.62430 + 0.937789i 0.985752 + 0.168206i \(0.0537974\pi\)
0.638547 + 0.769583i \(0.279536\pi\)
\(432\) −7.50343 8.77376i −0.361009 0.422128i
\(433\) −2.08743 7.79038i −0.100315 0.374382i 0.897456 0.441103i \(-0.145413\pi\)
−0.997772 + 0.0667216i \(0.978746\pi\)
\(434\) 4.03840 + 1.76565i 0.193849 + 0.0847537i
\(435\) −1.58359 + 3.86643i −0.0759273 + 0.185381i
\(436\) −4.31252 + 13.9047i −0.206532 + 0.665912i
\(437\) 18.9827 9.24867i 0.908066 0.442424i
\(438\) 1.45898 9.62928i 0.0697127 0.460105i
\(439\) −10.9117 18.8997i −0.520788 0.902031i −0.999708 0.0241726i \(-0.992305\pi\)
0.478920 0.877859i \(-0.341028\pi\)
\(440\) −11.9848 0.653187i −0.571352 0.0311395i
\(441\) 4.44867 7.70533i 0.211842 0.366921i
\(442\) 3.20474 1.25492i 0.152434 0.0596903i
\(443\) 4.79879 1.28583i 0.227998 0.0610918i −0.143011 0.989721i \(-0.545679\pi\)
0.371009 + 0.928629i \(0.379012\pi\)
\(444\) −0.937075 + 3.02136i −0.0444716 + 0.143387i
\(445\) −17.2704 2.20403i −0.818694 0.104481i
\(446\) −0.687770 6.14674i −0.0325668 0.291057i
\(447\) 1.07134 + 3.99829i 0.0506726 + 0.189113i
\(448\) 25.4229 + 2.98371i 1.20112 + 0.140967i
\(449\) 11.5926i 0.547088i −0.961859 0.273544i \(-0.911804\pi\)
0.961859 0.273544i \(-0.0881960\pi\)
\(450\) −15.5506 + 11.6498i −0.733061 + 0.549177i
\(451\) −17.6049 + 10.1642i −0.828982 + 0.478613i
\(452\) −1.03924 + 26.6727i −0.0488816 + 1.25458i
\(453\) −2.65622 0.711732i −0.124800 0.0334401i
\(454\) −12.1728 + 27.8416i −0.571296 + 1.30667i
\(455\) −7.56783 0.965799i −0.354785 0.0452773i
\(456\) 5.36825 + 3.08324i 0.251391 + 0.144386i
\(457\) 21.4420 + 21.4420i 1.00301 + 1.00301i 0.999995 + 0.00301854i \(0.000960833\pi\)
0.00301854 + 0.999995i \(0.499039\pi\)
\(458\) −2.24181 5.72502i −0.104753 0.267513i
\(459\) 3.29352 + 5.70455i 0.153729 + 0.266266i
\(460\) 3.57715 21.3671i 0.166785 0.996245i
\(461\) 10.7837 + 18.6780i 0.502248 + 0.869920i 0.999997 + 0.00259817i \(0.000827025\pi\)
−0.497748 + 0.867322i \(0.665840\pi\)
\(462\) 2.69110 3.36920i 0.125201 0.156749i
\(463\) 1.03493 + 1.03493i 0.0480974 + 0.0480974i 0.730746 0.682649i \(-0.239172\pi\)
−0.682649 + 0.730746i \(0.739172\pi\)
\(464\) −8.42283 + 12.2725i −0.391020 + 0.569736i
\(465\) 1.08371 0.147049i 0.0502558 0.00681922i
\(466\) 1.40552 0.157267i 0.0651097 0.00728523i
\(467\) −5.52579 + 5.52579i −0.255703 + 0.255703i −0.823304 0.567601i \(-0.807872\pi\)
0.567601 + 0.823304i \(0.307872\pi\)
\(468\) 2.73030 + 5.18533i 0.126208 + 0.239692i
\(469\) 4.77325 + 2.75584i 0.220408 + 0.127253i
\(470\) −25.2467 15.1028i −1.16454 0.696642i
\(471\) −8.56871 4.94715i −0.394825 0.227953i
\(472\) 14.2474 1.03454i 0.655791 0.0476187i
\(473\) 3.85931 + 1.03410i 0.177451 + 0.0475479i
\(474\) 6.46756 4.76558i 0.297065 0.218890i
\(475\) 12.0512 18.1595i 0.552946 0.833217i
\(476\) −13.9495 4.32645i −0.639376 0.198302i
\(477\) 2.69506 10.0581i 0.123398 0.460529i
\(478\) 31.3038 12.2580i 1.43180 0.560667i
\(479\) −2.84191 + 4.92234i −0.129850 + 0.224907i −0.923618 0.383313i \(-0.874783\pi\)
0.793768 + 0.608220i \(0.208116\pi\)
\(480\) 5.77275 2.64896i 0.263489 0.120908i
\(481\) 1.67942 2.90883i 0.0765748 0.132631i
\(482\) −3.28206 + 21.6616i −0.149494 + 0.986660i
\(483\) 5.50351 + 5.50351i 0.250418 + 0.250418i
\(484\) 10.8624 10.0477i 0.493747 0.456714i
\(485\) −4.03740 29.7546i −0.183329 1.35108i
\(486\) −13.7422 + 10.1258i −0.623357 + 0.459316i
\(487\) −14.1915 + 14.1915i −0.643079 + 0.643079i −0.951311 0.308232i \(-0.900263\pi\)
0.308232 + 0.951311i \(0.400263\pi\)
\(488\) 20.8642 + 30.7548i 0.944476 + 1.39220i
\(489\) −3.08065 + 1.77862i −0.139312 + 0.0804318i
\(490\) 7.12707 + 7.35158i 0.321968 + 0.332110i
\(491\) 7.82633 4.51853i 0.353197 0.203919i −0.312895 0.949788i \(-0.601299\pi\)
0.666093 + 0.745869i \(0.267966\pi\)
\(492\) 5.73730 9.09966i 0.258657 0.410244i
\(493\) 6.00533 6.00533i 0.270466 0.270466i
\(494\) −4.83548 4.45262i −0.217559 0.200333i
\(495\) −1.47615 + 11.5669i −0.0663482 + 0.519893i
\(496\) 3.88431 + 0.303146i 0.174411 + 0.0136117i
\(497\) 4.35608 16.2571i 0.195397 0.729232i
\(498\) −5.90954 + 7.39862i −0.264813 + 0.331540i
\(499\) −18.6093 32.2322i −0.833065 1.44291i −0.895596 0.444867i \(-0.853251\pi\)
0.0625318 0.998043i \(-0.480083\pi\)
\(500\) −7.99534 20.8824i −0.357563 0.933889i
\(501\) −12.2680 −0.548095
\(502\) −6.95829 1.05428i −0.310564 0.0470550i
\(503\) −33.5281 + 8.98384i −1.49495 + 0.400569i −0.911404 0.411514i \(-0.865000\pi\)
−0.583542 + 0.812083i \(0.698334\pi\)
\(504\) 4.67985 24.4240i 0.208457 1.08793i
\(505\) −1.70213 + 13.3376i −0.0757440 + 0.593517i
\(506\) −7.71245 10.4669i −0.342860 0.465310i
\(507\) −1.54172 5.75378i −0.0684702 0.255534i
\(508\) 20.2821 + 12.7878i 0.899874 + 0.567367i
\(509\) 30.5409 + 17.6328i 1.35370 + 0.781561i 0.988766 0.149472i \(-0.0477573\pi\)
0.364937 + 0.931032i \(0.381091\pi\)
\(510\) −3.51460 + 0.883567i −0.155629 + 0.0391250i
\(511\) 38.0038 21.9415i 1.68119 0.970636i
\(512\) 22.0945 4.88178i 0.976449 0.215746i
\(513\) 7.03931 10.4268i 0.310793 0.460355i
\(514\) −3.05162 + 2.24856i −0.134601 + 0.0991799i
\(515\) −25.9562 10.6310i −1.14377 0.468457i
\(516\) −2.06202 + 0.467297i −0.0907755 + 0.0205716i
\(517\) −17.0537 + 4.56953i −0.750021 + 0.200968i
\(518\) −13.2722 + 5.19714i −0.583147 + 0.228349i
\(519\) −2.98154 + 5.16418i −0.130875 + 0.226683i
\(520\) −6.59956 + 1.38839i −0.289410 + 0.0608847i
\(521\) 1.70985 0.0749101 0.0374550 0.999298i \(-0.488075\pi\)
0.0374550 + 0.999298i \(0.488075\pi\)
\(522\) 11.2990 + 9.02492i 0.494544 + 0.395010i
\(523\) −8.05741 + 2.15898i −0.352326 + 0.0944055i −0.430641 0.902523i \(-0.641713\pi\)
0.0783153 + 0.996929i \(0.475046\pi\)
\(524\) −6.65218 + 21.4483i −0.290602 + 0.936973i
\(525\) 7.77579 + 2.01754i 0.339363 + 0.0880525i
\(526\) 3.15920 + 28.2344i 0.137748 + 1.23108i
\(527\) −2.14726 0.575356i −0.0935361 0.0250629i
\(528\) 1.27003 3.59391i 0.0552708 0.156405i
\(529\) 0.404790 0.233706i 0.0175996 0.0101611i
\(530\) 10.2837 + 6.15183i 0.446696 + 0.267219i
\(531\) 13.8781i 0.602256i
\(532\) 4.24085 + 27.5699i 0.183864 + 1.19530i
\(533\) −8.07667 + 8.07667i −0.349839 + 0.349839i
\(534\) 2.21496 5.06608i 0.0958507 0.219231i
\(535\) 3.25663 7.95127i 0.140796 0.343763i
\(536\) 4.78512 + 0.916871i 0.206686 + 0.0396028i
\(537\) 1.24594 4.64991i 0.0537663 0.200659i
\(538\) 13.9375 17.4494i 0.600887 0.752297i
\(539\) 6.14482 0.264676
\(540\) −4.51942 12.0903i −0.194485 0.520284i
\(541\) −4.04452 + 7.00531i −0.173887 + 0.301182i −0.939776 0.341792i \(-0.888966\pi\)
0.765888 + 0.642974i \(0.222300\pi\)
\(542\) 26.3977 33.0493i 1.13388 1.41959i
\(543\) 7.17214 + 7.17214i 0.307786 + 0.307786i
\(544\) −12.9032 + 0.432969i −0.553221 + 0.0185634i
\(545\) −9.85715 + 12.9521i −0.422234 + 0.554809i
\(546\) 0.970590 2.21994i 0.0415374 0.0950047i
\(547\) −10.2159 38.1262i −0.436799 1.63016i −0.736723 0.676194i \(-0.763628\pi\)
0.299924 0.953963i \(-0.403039\pi\)
\(548\) −8.54473 + 13.5524i −0.365013 + 0.578929i
\(549\) 31.2683 18.0528i 1.33450 0.770474i
\(550\) −12.3377 5.27803i −0.526082 0.225056i
\(551\) −15.3345 5.28724i −0.653270 0.225244i
\(552\) 6.19182 + 2.99950i 0.263541 + 0.127667i
\(553\) 34.9649 + 9.36883i 1.48686 + 0.398403i
\(554\) −6.80030 2.97319i −0.288917 0.126319i
\(555\) −2.14187 + 2.81439i −0.0909175 + 0.119464i
\(556\) 1.58204 + 6.98101i 0.0670935 + 0.296061i
\(557\) −30.5918 + 8.19706i −1.29622 + 0.347321i −0.840019 0.542557i \(-0.817456\pi\)
−0.456199 + 0.889878i \(0.650789\pi\)
\(558\) 0.567035 3.74244i 0.0240045 0.158430i
\(559\) 2.24497 0.0949521
\(560\) 25.5593 + 12.8747i 1.08008 + 0.544054i
\(561\) −1.08742 + 1.88347i −0.0459110 + 0.0795202i
\(562\) 1.63255 10.7748i 0.0688648 0.454509i
\(563\) −9.85507 9.85507i −0.415342 0.415342i 0.468253 0.883594i \(-0.344884\pi\)
−0.883594 + 0.468253i \(0.844884\pi\)
\(564\) 6.85856 6.34415i 0.288797 0.267137i
\(565\) −11.3112 + 27.6170i −0.475865 + 1.16186i
\(566\) 2.98246 + 26.6549i 0.125362 + 1.12039i
\(567\) −20.9990 5.62666i −0.881874 0.236297i
\(568\) −1.07748 14.8387i −0.0452101 0.622620i
\(569\) 31.8088i 1.33350i 0.745283 + 0.666748i \(0.232314\pi\)
−0.745283 + 0.666748i \(0.767686\pi\)
\(570\) 4.45710 + 5.29527i 0.186687 + 0.221795i
\(571\) 13.7946i 0.577285i −0.957437 0.288642i \(-0.906796\pi\)
0.957437 0.288642i \(-0.0932039\pi\)
\(572\) −2.15856 + 3.42360i −0.0902541 + 0.143148i
\(573\) −12.1797 3.26355i −0.508816 0.136337i
\(574\) 48.1701 5.38984i 2.01058 0.224967i
\(575\) 11.9440 21.0719i 0.498099 0.878760i
\(576\) −3.17573 21.7523i −0.132322 0.906347i
\(577\) 12.3330 + 12.3330i 0.513431 + 0.513431i 0.915576 0.402145i \(-0.131735\pi\)
−0.402145 + 0.915576i \(0.631735\pi\)
\(578\) −16.4871 2.49805i −0.685775 0.103905i
\(579\) 0.790374 1.36897i 0.0328468 0.0568923i
\(580\) −13.5490 + 9.66297i −0.562591 + 0.401233i
\(581\) −42.6657 −1.77007
\(582\) 9.42829 + 1.42853i 0.390815 + 0.0592143i
\(583\) 6.94648 1.86130i 0.287694 0.0770873i
\(584\) 25.3712 29.3442i 1.04987 1.21427i
\(585\) 0.880959 + 6.49243i 0.0364232 + 0.268429i
\(586\) −15.9383 + 36.4543i −0.658407 + 1.50591i
\(587\) −2.69481 0.722072i −0.111227 0.0298031i 0.202776 0.979225i \(-0.435004\pi\)
−0.314003 + 0.949422i \(0.601670\pi\)
\(588\) −2.87723 + 1.51498i −0.118655 + 0.0624769i
\(589\) 0.808378 + 4.16804i 0.0333086 + 0.171741i
\(590\) 15.3609 + 4.37229i 0.632398 + 0.180004i
\(591\) 6.79017 3.92031i 0.279310 0.161260i
\(592\) −9.57552 + 8.18911i −0.393552 + 0.336570i
\(593\) −0.619518 2.31207i −0.0254406 0.0949454i 0.952038 0.305979i \(-0.0989837\pi\)
−0.977479 + 0.211034i \(0.932317\pi\)
\(594\) −7.09737 3.10307i −0.291209 0.127321i
\(595\) −12.9940 9.88897i −0.532700 0.405408i
\(596\) −4.88396 + 15.7471i −0.200055 + 0.645026i
\(597\) 4.42843 + 4.42843i 0.181244 + 0.181244i
\(598\) −5.70797 4.55917i −0.233416 0.186438i
\(599\) 10.9826 19.0224i 0.448735 0.777232i −0.549569 0.835449i \(-0.685208\pi\)
0.998304 + 0.0582161i \(0.0185413\pi\)
\(600\) 7.07825 0.570456i 0.288968 0.0232888i
\(601\) −43.4214 −1.77119 −0.885597 0.464454i \(-0.846250\pi\)
−0.885597 + 0.464454i \(0.846250\pi\)
\(602\) −7.44369 5.94555i −0.303382 0.242322i
\(603\) 1.22509 4.57211i 0.0498897 0.186191i
\(604\) −7.43755 8.04062i −0.302630 0.327168i
\(605\) 15.2589 6.39149i 0.620364 0.259851i
\(606\) −3.91245 1.71058i −0.158932 0.0694875i
\(607\) 14.2943 14.2943i 0.580188 0.580188i −0.354767 0.934955i \(-0.615440\pi\)
0.934955 + 0.354767i \(0.115440\pi\)
\(608\) 11.5373 + 21.7920i 0.467898 + 0.883783i
\(609\) 5.97869i 0.242269i
\(610\) 10.1306 + 40.2968i 0.410175 + 1.63157i
\(611\) −8.59113 + 4.96009i −0.347560 + 0.200664i
\(612\) −0.488328 + 12.5332i −0.0197395 + 0.506627i
\(613\) 13.2713 + 3.55605i 0.536024 + 0.143627i 0.516669 0.856185i \(-0.327172\pi\)
0.0193556 + 0.999813i \(0.493839\pi\)
\(614\) −13.7812 + 1.54200i −0.556163 + 0.0622300i
\(615\) 9.51260 7.35941i 0.383585 0.296760i
\(616\) 16.2242 5.63498i 0.653692 0.227040i
\(617\) −4.40676 + 1.18079i −0.177409 + 0.0475367i −0.346430 0.938076i \(-0.612606\pi\)
0.169021 + 0.985613i \(0.445940\pi\)
\(618\) 5.55920 6.95999i 0.223624 0.279972i
\(619\) 1.40109 0.0563147 0.0281574 0.999604i \(-0.491036\pi\)
0.0281574 + 0.999604i \(0.491036\pi\)
\(620\) 3.96367 + 1.80668i 0.159185 + 0.0725580i
\(621\) 6.99078 12.1084i 0.280530 0.485893i
\(622\) 7.70741 + 19.6828i 0.309039 + 0.789208i
\(623\) 24.0643 6.44802i 0.964117 0.258335i
\(624\) 0.166642 2.13524i 0.00667101 0.0854780i
\(625\) −0.396664 24.9969i −0.0158665 0.999874i
\(626\) 19.9939 + 27.1346i 0.799118 + 1.08452i
\(627\) 4.14348 + 0.291479i 0.165475 + 0.0116406i
\(628\) −18.3609 34.8707i −0.732681 1.39149i
\(629\) 6.22584 3.59449i 0.248241 0.143322i
\(630\) 14.2734 23.8602i 0.568668 0.950613i
\(631\) 12.2216 + 7.05615i 0.486534 + 0.280901i 0.723136 0.690706i \(-0.242700\pi\)
−0.236601 + 0.971607i \(0.576033\pi\)
\(632\) 31.9144 2.31739i 1.26949 0.0921806i
\(633\) 1.88631 + 7.03979i 0.0749739 + 0.279807i
\(634\) −14.4750 + 10.6658i −0.574875 + 0.423592i
\(635\) 16.4033 + 21.2025i 0.650946 + 0.841397i
\(636\) −2.79369 + 2.58416i −0.110777 + 0.102469i
\(637\) 3.33501 0.893614i 0.132138 0.0354063i
\(638\) −1.49613 + 9.87448i −0.0592324 + 0.390934i
\(639\) −14.4541 −0.571793
\(640\) 25.0770 + 3.33803i 0.991257 + 0.131947i
\(641\) −6.90217 11.9549i −0.272619 0.472191i 0.696912 0.717156i \(-0.254557\pi\)
−0.969532 + 0.244966i \(0.921223\pi\)
\(642\) 2.13208 + 1.70297i 0.0841466 + 0.0672109i
\(643\) −4.37807 + 16.3392i −0.172654 + 0.644355i 0.824285 + 0.566175i \(0.191577\pi\)
−0.996939 + 0.0781795i \(0.975089\pi\)
\(644\) 6.85161 + 30.2338i 0.269991 + 1.19138i
\(645\) −2.34485 0.299248i −0.0923284 0.0117829i
\(646\) −4.19790 13.4280i −0.165164 0.528317i
\(647\) −1.53435 + 1.53435i −0.0603215 + 0.0603215i −0.736624 0.676303i \(-0.763581\pi\)
0.676303 + 0.736624i \(0.263581\pi\)
\(648\) −19.1669 + 1.39176i −0.752946 + 0.0546734i
\(649\) 8.30057 4.79234i 0.325826 0.188116i
\(650\) −7.46368 1.07036i −0.292750 0.0419828i
\(651\) −1.35527 + 0.782465i −0.0531172 + 0.0306672i
\(652\) −14.1578 0.551625i −0.554463 0.0216033i
\(653\) −20.6382 + 20.6382i −0.807636 + 0.807636i −0.984276 0.176640i \(-0.943477\pi\)
0.176640 + 0.984276i \(0.443477\pi\)
\(654\) −3.06624 4.16132i −0.119899 0.162720i
\(655\) −15.2049 + 19.9790i −0.594105 + 0.780645i
\(656\) 38.6608 18.4713i 1.50945 0.721184i
\(657\) −26.6484 26.6484i −1.03965 1.03965i
\(658\) 41.6220 + 6.30635i 1.62259 + 0.245847i
\(659\) −24.3027 + 42.0934i −0.946697 + 1.63973i −0.194381 + 0.980926i \(0.562270\pi\)
−0.752317 + 0.658802i \(0.771064\pi\)
\(660\) 2.71096 3.28819i 0.105524 0.127993i
\(661\) 14.7402 25.5307i 0.573327 0.993031i −0.422894 0.906179i \(-0.638986\pi\)
0.996221 0.0868521i \(-0.0276808\pi\)
\(662\) −12.7655 32.5999i −0.496146 1.26703i
\(663\) −0.316278 + 1.18037i −0.0122832 + 0.0458416i
\(664\) −35.6276 + 12.3742i −1.38262 + 0.480211i
\(665\) −6.10910 + 30.5824i −0.236901 + 1.18593i
\(666\) 7.26124 + 9.85453i 0.281367 + 0.381855i
\(667\) −17.4125 4.66566i −0.674213 0.180655i
\(668\) −41.3341 26.0610i −1.59926 1.00833i
\(669\) 1.90186 + 1.09804i 0.0735302 + 0.0424527i
\(670\) 4.67467 + 2.79644i 0.180598 + 0.108036i
\(671\) 21.5950 + 12.4679i 0.833666 + 0.481317i
\(672\) −6.20748 + 6.63852i −0.239459 + 0.256087i
\(673\) −26.8315 + 26.8315i −1.03428 + 1.03428i −0.0348865 + 0.999391i \(0.511107\pi\)
−0.999391 + 0.0348865i \(0.988893\pi\)
\(674\) −4.97548 44.4669i −0.191648 1.71280i
\(675\) −0.114488 14.4304i −0.00440664 0.555428i
\(676\) 7.02831 22.6610i 0.270320 0.871578i
\(677\) 9.44414 + 9.44414i 0.362968 + 0.362968i 0.864904 0.501937i \(-0.167379\pi\)
−0.501937 + 0.864904i \(0.667379\pi\)
\(678\) −7.40532 5.91489i −0.284399 0.227160i
\(679\) 21.4835 + 37.2106i 0.824463 + 1.42801i
\(680\) −13.7186 4.48911i −0.526083 0.172150i
\(681\) −5.39449 9.34353i −0.206717 0.358045i
\(682\) 2.43419 0.953182i 0.0932099 0.0364992i
\(683\) −10.0796 10.0796i −0.385683 0.385683i 0.487461 0.873145i \(-0.337923\pi\)
−0.873145 + 0.487461i \(0.837923\pi\)
\(684\) 21.9275 9.64594i 0.838418 0.368822i
\(685\) −14.1674 + 10.9606i −0.541308 + 0.418782i
\(686\) 15.5979 + 6.81961i 0.595529 + 0.260374i
\(687\) 2.10863 + 0.565005i 0.0804492 + 0.0215563i
\(688\) −7.94015 2.80591i −0.302716 0.106974i
\(689\) 3.49942 2.02039i 0.133317 0.0769708i
\(690\) 5.35421 + 5.52286i 0.203831 + 0.210252i
\(691\) 30.6080i 1.16438i −0.813052 0.582191i \(-0.802196\pi\)
0.813052 0.582191i \(-0.197804\pi\)
\(692\) −21.0159 + 11.0658i −0.798903 + 0.420657i
\(693\) −4.31858 16.1172i −0.164049 0.612241i
\(694\) −30.6986 + 3.43492i −1.16530 + 0.130388i
\(695\) −1.01311 + 7.93853i −0.0384294 + 0.301126i
\(696\) −1.73398 4.99245i −0.0657262 0.189238i
\(697\) −23.6140 + 6.32736i −0.894445 + 0.239666i
\(698\) 10.2509 + 26.1783i 0.388003 + 0.990862i
\(699\) −0.251080 + 0.434883i −0.00949671 + 0.0164488i
\(700\) 21.9128 + 23.3157i 0.828224 + 0.881251i
\(701\) −2.62725 4.55052i −0.0992297 0.171871i 0.812136 0.583468i \(-0.198305\pi\)
−0.911366 + 0.411597i \(0.864971\pi\)
\(702\) −4.30326 0.652008i −0.162416 0.0246085i
\(703\) −11.3796 7.68258i −0.429191 0.289754i
\(704\) 11.9136 9.41089i 0.449010 0.354686i
\(705\) 9.63452 4.03560i 0.362857 0.151989i
\(706\) −5.80318 + 13.2731i −0.218406 + 0.499539i
\(707\) −4.97971 18.5845i −0.187281 0.698943i
\(708\) −2.70509 + 4.29042i −0.101664 + 0.161244i
\(709\) 17.7494 + 10.2476i 0.666592 + 0.384857i 0.794784 0.606892i \(-0.207584\pi\)
−0.128192 + 0.991749i \(0.540917\pi\)
\(710\) 4.55376 15.9984i 0.170899 0.600411i
\(711\) 31.0870i 1.16585i
\(712\) 18.2246 12.3637i 0.682997 0.463347i
\(713\) 1.22124 + 4.55774i 0.0457359 + 0.170689i
\(714\) 4.17475 3.07614i 0.156236 0.115121i
\(715\) −3.57896 + 2.76886i −0.133846 + 0.103549i
\(716\) 14.0757 13.0200i 0.526034 0.486580i
\(717\) −3.08939 + 11.5298i −0.115375 + 0.430587i
\(718\) 28.8469 + 23.0411i 1.07656 + 0.859885i
\(719\) 0.757420 + 1.31189i 0.0282470 + 0.0489252i 0.879803 0.475338i \(-0.157674\pi\)
−0.851556 + 0.524263i \(0.824341\pi\)
\(720\) 4.99884 24.0639i 0.186296 0.896810i
\(721\) 40.1363 1.49475
\(722\) −19.5435 + 18.4404i −0.727336 + 0.686282i
\(723\) −5.50055 5.50055i −0.204568 0.204568i
\(724\) 8.92897 + 39.4005i 0.331843 + 1.46431i
\(725\) −17.9333 + 4.95803i −0.666025 + 0.184136i
\(726\) 0.584210 + 5.22121i 0.0216821 + 0.193777i
\(727\) −1.10364 0.295719i −0.0409317 0.0109676i 0.238295 0.971193i \(-0.423411\pi\)
−0.279227 + 0.960225i \(0.590078\pi\)
\(728\) 7.98599 5.41772i 0.295980 0.200794i
\(729\) 14.3223i 0.530454i
\(730\) 37.8913 21.1001i 1.40242 0.780951i
\(731\) 4.16122 + 2.40248i 0.153908 + 0.0888589i
\(732\) −13.1855 0.513740i −0.487349 0.0189884i
\(733\) −0.953299 + 0.953299i −0.0352109 + 0.0352109i −0.724493 0.689282i \(-0.757926\pi\)
0.689282 + 0.724493i \(0.257926\pi\)
\(734\) −2.74894 3.73070i −0.101465 0.137703i
\(735\) −3.60251 + 0.488825i −0.132881 + 0.0180306i
\(736\) 14.4900 + 23.2594i 0.534108 + 0.857351i
\(737\) 3.15766 0.846093i 0.116314 0.0311662i
\(738\) −15.1779 38.7607i −0.558708 1.42680i
\(739\) −0.0272618 0.0472188i −0.00100284 0.00173697i 0.865524 0.500868i \(-0.166986\pi\)
−0.866526 + 0.499131i \(0.833653\pi\)
\(740\) −13.1951 + 4.93241i −0.485063 + 0.181319i
\(741\) 2.29120 0.444372i 0.0841695 0.0163244i
\(742\) −16.9539 2.56876i −0.622396 0.0943023i
\(743\) −2.86713 + 10.7003i −0.105185 + 0.392555i −0.998366 0.0571416i \(-0.981801\pi\)
0.893181 + 0.449697i \(0.148468\pi\)
\(744\) −0.904771 + 1.04645i −0.0331705 + 0.0383649i
\(745\) −11.1633 + 14.6684i −0.408991 + 0.537408i
\(746\) −13.4896 + 30.8536i −0.493890 + 1.12963i
\(747\) 9.48342 + 35.3926i 0.346980 + 1.29495i
\(748\) −7.66486 + 4.03588i −0.280255 + 0.147566i
\(749\) 12.2951i 0.449253i
\(750\) 7.65307 + 2.11286i 0.279451 + 0.0771509i
\(751\) 28.8295 + 16.6447i 1.05200 + 0.607374i 0.923209 0.384297i \(-0.125556\pi\)
0.128794 + 0.991671i \(0.458890\pi\)
\(752\) 36.5851 6.80540i 1.33412 0.248168i
\(753\) 1.76692 1.76692i 0.0643903 0.0643903i
\(754\) 0.623999 + 5.57681i 0.0227247 + 0.203095i
\(755\) −4.73112 11.2950i −0.172183 0.411067i
\(756\) 12.5417 + 13.5586i 0.456135 + 0.493121i
\(757\) −12.3581 + 46.1212i −0.449164 + 1.67630i 0.255537 + 0.966799i \(0.417748\pi\)
−0.704701 + 0.709504i \(0.748919\pi\)
\(758\) −46.0816 + 18.0447i −1.67376 + 0.655412i
\(759\) 4.61629 0.167561
\(760\) 3.76833 + 27.3093i 0.136692 + 0.990614i
\(761\) −45.0835 −1.63428 −0.817138 0.576442i \(-0.804441\pi\)
−0.817138 + 0.576442i \(0.804441\pi\)
\(762\) −7.92715 + 3.10412i −0.287170 + 0.112450i
\(763\) 6.02803 22.4969i 0.218229 0.814443i
\(764\) −34.1039 36.8691i −1.23383 1.33388i
\(765\) −5.31502 + 12.9770i −0.192165 + 0.469183i
\(766\) −4.27666 38.2214i −0.154522 1.38100i
\(767\) 3.80809 3.80809i 0.137502 0.137502i
\(768\) −3.25815 + 7.34377i −0.117568 + 0.264996i
\(769\)