Properties

Label 380.2.v.c.7.6
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.6
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37248 + 0.341027i) q^{2} +(-0.280019 + 1.04505i) q^{3} +(1.76740 - 0.936104i) q^{4} +(1.80654 + 1.31773i) q^{5} +(0.0279322 - 1.52980i) q^{6} +(3.16094 - 3.16094i) q^{7} +(-2.10649 + 1.88752i) q^{8} +(1.58437 + 0.914735i) q^{9} +O(q^{10})\) \(q+(-1.37248 + 0.341027i) q^{2} +(-0.280019 + 1.04505i) q^{3} +(1.76740 - 0.936104i) q^{4} +(1.80654 + 1.31773i) q^{5} +(0.0279322 - 1.52980i) q^{6} +(3.16094 - 3.16094i) q^{7} +(-2.10649 + 1.88752i) q^{8} +(1.58437 + 0.914735i) q^{9} +(-2.92882 - 1.19249i) q^{10} -0.437437i q^{11} +(0.483365 + 2.10914i) q^{12} +(-1.27670 - 4.76472i) q^{13} +(-3.26036 + 5.41629i) q^{14} +(-1.88296 + 1.51892i) q^{15} +(2.24742 - 3.30894i) q^{16} +(1.14649 - 4.27877i) q^{17} +(-2.48646 - 0.715144i) q^{18} +(1.42657 - 4.11885i) q^{19} +(4.42641 + 0.637858i) q^{20} +(2.41820 + 4.18844i) q^{21} +(0.149178 + 0.600373i) q^{22} +(-5.89690 + 1.58007i) q^{23} +(-1.38268 - 2.72991i) q^{24} +(1.52715 + 4.76107i) q^{25} +(3.37714 + 6.10409i) q^{26} +(-3.69467 + 3.69467i) q^{27} +(2.62768 - 8.54561i) q^{28} +(7.30150 + 4.21552i) q^{29} +(2.06633 - 2.72683i) q^{30} +5.09810i q^{31} +(-1.95610 + 5.30789i) q^{32} +(0.457141 + 0.122491i) q^{33} +(-0.114364 + 6.26352i) q^{34} +(9.87562 - 1.54508i) q^{35} +(3.65650 + 0.133571i) q^{36} +(0.393671 + 0.393671i) q^{37} +(-0.553307 + 6.13953i) q^{38} +5.33684 q^{39} +(-6.29269 + 0.634078i) q^{40} +(-3.07132 - 5.31968i) q^{41} +(-4.74730 - 4.92388i) q^{42} +(-1.34149 + 5.00650i) q^{43} +(-0.409486 - 0.773126i) q^{44} +(1.65684 + 3.74028i) q^{45} +(7.55453 - 4.17962i) q^{46} +(-0.159082 - 0.593701i) q^{47} +(2.82868 + 3.27522i) q^{48} -12.9830i q^{49} +(-3.71964 - 6.01367i) q^{50} +(4.15047 + 2.39628i) q^{51} +(-6.71672 - 7.22604i) q^{52} +(0.558679 + 2.08502i) q^{53} +(3.81088 - 6.33084i) q^{54} +(0.576425 - 0.790246i) q^{55} +(-0.692153 + 12.6248i) q^{56} +(3.90491 + 2.64419i) q^{57} +(-11.4588 - 3.29571i) q^{58} +(4.33147 + 7.50233i) q^{59} +(-1.90607 + 4.44719i) q^{60} +(-7.13477 + 12.3578i) q^{61} +(-1.73859 - 6.99704i) q^{62} +(7.89951 - 2.11667i) q^{63} +(0.874570 - 7.95205i) q^{64} +(3.97222 - 10.2900i) q^{65} +(-0.669189 - 0.0122185i) q^{66} +(1.44106 + 5.37812i) q^{67} +(-1.97906 - 8.63555i) q^{68} -6.60498i q^{69} +(-13.0272 + 5.48844i) q^{70} +(-7.25049 + 4.18607i) q^{71} +(-5.06403 + 1.06364i) q^{72} +(-8.26542 - 2.21471i) q^{73} +(-0.674558 - 0.406053i) q^{74} +(-5.40317 + 0.262754i) q^{75} +(-1.33434 - 8.61508i) q^{76} +(-1.38271 - 1.38271i) q^{77} +(-7.32471 + 1.82001i) q^{78} +(-4.85533 - 8.40968i) q^{79} +(8.42035 - 3.01623i) q^{80} +(-0.0823140 - 0.142572i) q^{81} +(6.02947 + 6.25375i) q^{82} +(-0.249919 - 0.249919i) q^{83} +(8.19475 + 5.13897i) q^{84} +(7.70947 - 6.21899i) q^{85} +(0.133815 - 7.32880i) q^{86} +(-6.44997 + 6.44997i) q^{87} +(0.825668 + 0.921454i) q^{88} +(-9.89437 - 5.71252i) q^{89} +(-3.54952 - 4.56843i) q^{90} +(-19.0965 - 11.0254i) q^{91} +(-8.94308 + 8.31274i) q^{92} +(-5.32774 - 1.42756i) q^{93} +(0.420804 + 0.760591i) q^{94} +(8.00470 - 5.56100i) q^{95} +(-4.99924 - 3.53052i) q^{96} +(1.38295 - 5.16123i) q^{97} +(4.42756 + 17.8190i) q^{98} +(0.400139 - 0.693060i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37248 + 0.341027i −0.970490 + 0.241142i
\(3\) −0.280019 + 1.04505i −0.161669 + 0.603357i 0.836773 + 0.547551i \(0.184440\pi\)
−0.998442 + 0.0558064i \(0.982227\pi\)
\(4\) 1.76740 0.936104i 0.883701 0.468052i
\(5\) 1.80654 + 1.31773i 0.807908 + 0.589309i
\(6\) 0.0279322 1.52980i 0.0114033 0.624537i
\(7\) 3.16094 3.16094i 1.19472 1.19472i 0.218996 0.975726i \(-0.429722\pi\)
0.975726 0.218996i \(-0.0702782\pi\)
\(8\) −2.10649 + 1.88752i −0.744755 + 0.667338i
\(9\) 1.58437 + 0.914735i 0.528123 + 0.304912i
\(10\) −2.92882 1.19249i −0.926174 0.377097i
\(11\) 0.437437i 0.131892i −0.997823 0.0659461i \(-0.978993\pi\)
0.997823 0.0659461i \(-0.0210065\pi\)
\(12\) 0.483365 + 2.10914i 0.139536 + 0.608857i
\(13\) −1.27670 4.76472i −0.354093 1.32149i −0.881622 0.471957i \(-0.843548\pi\)
0.527528 0.849538i \(-0.323119\pi\)
\(14\) −3.26036 + 5.41629i −0.871367 + 1.44756i
\(15\) −1.88296 + 1.51892i −0.486177 + 0.392184i
\(16\) 2.24742 3.30894i 0.561854 0.827236i
\(17\) 1.14649 4.27877i 0.278066 1.03776i −0.675693 0.737183i \(-0.736156\pi\)
0.953759 0.300572i \(-0.0971777\pi\)
\(18\) −2.48646 0.715144i −0.586065 0.168561i
\(19\) 1.42657 4.11885i 0.327278 0.944928i
\(20\) 4.42641 + 0.637858i 0.989776 + 0.142629i
\(21\) 2.41820 + 4.18844i 0.527694 + 0.913993i
\(22\) 0.149178 + 0.600373i 0.0318048 + 0.128000i
\(23\) −5.89690 + 1.58007i −1.22959 + 0.329467i −0.814419 0.580277i \(-0.802944\pi\)
−0.415170 + 0.909744i \(0.636278\pi\)
\(24\) −1.38268 2.72991i −0.282239 0.557241i
\(25\) 1.52715 + 4.76107i 0.305431 + 0.952214i
\(26\) 3.37714 + 6.10409i 0.662312 + 1.19711i
\(27\) −3.69467 + 3.69467i −0.711040 + 0.711040i
\(28\) 2.62768 8.54561i 0.496584 1.61497i
\(29\) 7.30150 + 4.21552i 1.35585 + 0.782803i 0.989062 0.147499i \(-0.0471225\pi\)
0.366793 + 0.930303i \(0.380456\pi\)
\(30\) 2.06633 2.72683i 0.377258 0.497848i
\(31\) 5.09810i 0.915646i 0.889043 + 0.457823i \(0.151371\pi\)
−0.889043 + 0.457823i \(0.848629\pi\)
\(32\) −1.95610 + 5.30789i −0.345792 + 0.938311i
\(33\) 0.457141 + 0.122491i 0.0795780 + 0.0213229i
\(34\) −0.114364 + 6.26352i −0.0196132 + 1.07418i
\(35\) 9.87562 1.54508i 1.66929 0.261165i
\(36\) 3.65650 + 0.133571i 0.609417 + 0.0222618i
\(37\) 0.393671 + 0.393671i 0.0647191 + 0.0647191i 0.738726 0.674006i \(-0.235428\pi\)
−0.674006 + 0.738726i \(0.735428\pi\)
\(38\) −0.553307 + 6.13953i −0.0897583 + 0.995964i
\(39\) 5.33684 0.854579
\(40\) −6.29269 + 0.634078i −0.994962 + 0.100257i
\(41\) −3.07132 5.31968i −0.479659 0.830794i 0.520069 0.854125i \(-0.325906\pi\)
−0.999728 + 0.0233303i \(0.992573\pi\)
\(42\) −4.74730 4.92388i −0.732524 0.759772i
\(43\) −1.34149 + 5.00650i −0.204575 + 0.763484i 0.785004 + 0.619491i \(0.212661\pi\)
−0.989579 + 0.143993i \(0.954006\pi\)
\(44\) −0.409486 0.773126i −0.0617324 0.116553i
\(45\) 1.65684 + 3.74028i 0.246987 + 0.557568i
\(46\) 7.55453 4.17962i 1.11386 0.616251i
\(47\) −0.159082 0.593701i −0.0232044 0.0866002i 0.953353 0.301859i \(-0.0976072\pi\)
−0.976557 + 0.215259i \(0.930941\pi\)
\(48\) 2.82868 + 3.27522i 0.408284 + 0.472737i
\(49\) 12.9830i 1.85472i
\(50\) −3.71964 6.01367i −0.526037 0.850462i
\(51\) 4.15047 + 2.39628i 0.581182 + 0.335546i
\(52\) −6.71672 7.22604i −0.931441 1.00207i
\(53\) 0.558679 + 2.08502i 0.0767404 + 0.286399i 0.993622 0.112759i \(-0.0359690\pi\)
−0.916882 + 0.399159i \(0.869302\pi\)
\(54\) 3.81088 6.33084i 0.518595 0.861518i
\(55\) 0.576425 0.790246i 0.0777252 0.106557i
\(56\) −0.692153 + 12.6248i −0.0924929 + 1.68706i
\(57\) 3.90491 + 2.64419i 0.517218 + 0.350231i
\(58\) −11.4588 3.29571i −1.50461 0.432749i
\(59\) 4.33147 + 7.50233i 0.563909 + 0.976720i 0.997150 + 0.0754416i \(0.0240367\pi\)
−0.433241 + 0.901278i \(0.642630\pi\)
\(60\) −1.90607 + 4.44719i −0.246073 + 0.574130i
\(61\) −7.13477 + 12.3578i −0.913514 + 1.58225i −0.104452 + 0.994530i \(0.533309\pi\)
−0.809062 + 0.587723i \(0.800024\pi\)
\(62\) −1.73859 6.99704i −0.220801 0.888625i
\(63\) 7.89951 2.11667i 0.995244 0.266675i
\(64\) 0.874570 7.95205i 0.109321 0.994006i
\(65\) 3.97222 10.2900i 0.492693 1.27632i
\(66\) −0.669189 0.0122185i −0.0823715 0.00150400i
\(67\) 1.44106 + 5.37812i 0.176054 + 0.657042i 0.996370 + 0.0851315i \(0.0271310\pi\)
−0.820316 + 0.571911i \(0.806202\pi\)
\(68\) −1.97906 8.63555i −0.239997 1.04721i
\(69\) 6.60498i 0.795146i
\(70\) −13.0272 + 5.48844i −1.55705 + 0.655994i
\(71\) −7.25049 + 4.18607i −0.860475 + 0.496795i −0.864171 0.503198i \(-0.832157\pi\)
0.00369633 + 0.999993i \(0.498823\pi\)
\(72\) −5.06403 + 1.06364i −0.596801 + 0.125351i
\(73\) −8.26542 2.21471i −0.967394 0.259212i −0.259667 0.965698i \(-0.583613\pi\)
−0.707727 + 0.706486i \(0.750279\pi\)
\(74\) −0.674558 0.406053i −0.0784158 0.0472027i
\(75\) −5.40317 + 0.262754i −0.623904 + 0.0303402i
\(76\) −1.33434 8.61508i −0.153059 0.988217i
\(77\) −1.38271 1.38271i −0.157574 0.157574i
\(78\) −7.32471 + 1.82001i −0.829360 + 0.206075i
\(79\) −4.85533 8.40968i −0.546268 0.946163i −0.998526 0.0542763i \(-0.982715\pi\)
0.452258 0.891887i \(-0.350618\pi\)
\(80\) 8.42035 3.01623i 0.941424 0.337225i
\(81\) −0.0823140 0.142572i −0.00914600 0.0158413i
\(82\) 6.02947 + 6.25375i 0.665844 + 0.690611i
\(83\) −0.249919 0.249919i −0.0274322 0.0274322i 0.693258 0.720690i \(-0.256175\pi\)
−0.720690 + 0.693258i \(0.756175\pi\)
\(84\) 8.19475 + 5.13897i 0.894120 + 0.560708i
\(85\) 7.70947 6.21899i 0.836209 0.674544i
\(86\) 0.133815 7.32880i 0.0144296 0.790285i
\(87\) −6.44997 + 6.44997i −0.691510 + 0.691510i
\(88\) 0.825668 + 0.921454i 0.0880165 + 0.0982274i
\(89\) −9.89437 5.71252i −1.04880 0.605525i −0.126487 0.991968i \(-0.540370\pi\)
−0.922313 + 0.386443i \(0.873704\pi\)
\(90\) −3.54952 4.56843i −0.374152 0.481555i
\(91\) −19.0965 11.0254i −2.00186 1.15578i
\(92\) −8.94308 + 8.31274i −0.932381 + 0.866663i
\(93\) −5.32774 1.42756i −0.552461 0.148032i
\(94\) 0.420804 + 0.760591i 0.0434026 + 0.0784490i
\(95\) 8.00470 5.56100i 0.821265 0.570547i
\(96\) −4.99924 3.53052i −0.510233 0.360332i
\(97\) 1.38295 5.16123i 0.140417 0.524043i −0.859500 0.511136i \(-0.829225\pi\)
0.999917 0.0129072i \(-0.00410860\pi\)
\(98\) 4.42756 + 17.8190i 0.447251 + 1.79999i
\(99\) 0.400139 0.693060i 0.0402154 0.0696552i
\(100\) 7.15595 + 6.98515i 0.715595 + 0.698515i
\(101\) −4.87945 + 8.45145i −0.485523 + 0.840951i −0.999862 0.0166365i \(-0.994704\pi\)
0.514338 + 0.857587i \(0.328038\pi\)
\(102\) −6.51363 1.87342i −0.644946 0.185496i
\(103\) 1.95373 + 1.95373i 0.192507 + 0.192507i 0.796778 0.604271i \(-0.206536\pi\)
−0.604271 + 0.796778i \(0.706536\pi\)
\(104\) 11.6828 + 7.62702i 1.14560 + 0.747890i
\(105\) −1.15069 + 10.7531i −0.112296 + 1.04940i
\(106\) −1.47782 2.67112i −0.143539 0.259442i
\(107\) 0.350562 0.350562i 0.0338901 0.0338901i −0.689959 0.723849i \(-0.742371\pi\)
0.723849 + 0.689959i \(0.242371\pi\)
\(108\) −3.07137 + 9.98856i −0.295543 + 0.961150i
\(109\) 2.23409 1.28985i 0.213987 0.123545i −0.389176 0.921163i \(-0.627240\pi\)
0.603163 + 0.797618i \(0.293907\pi\)
\(110\) −0.521637 + 1.28117i −0.0497361 + 0.122155i
\(111\) −0.521640 + 0.301169i −0.0495118 + 0.0285857i
\(112\) −3.35542 17.5633i −0.317058 1.65958i
\(113\) −4.67584 + 4.67584i −0.439866 + 0.439866i −0.891967 0.452101i \(-0.850675\pi\)
0.452101 + 0.891967i \(0.350675\pi\)
\(114\) −6.26115 2.29742i −0.586411 0.215173i
\(115\) −12.7351 4.91609i −1.18755 0.458428i
\(116\) 16.8509 + 0.615556i 1.56456 + 0.0571529i
\(117\) 2.33569 8.71691i 0.215934 0.805878i
\(118\) −8.50335 8.81965i −0.782797 0.811914i
\(119\) −9.90094 17.1489i −0.907617 1.57204i
\(120\) 1.09943 6.75370i 0.100364 0.616525i
\(121\) 10.8086 0.982604
\(122\) 5.57800 19.3940i 0.505008 1.75585i
\(123\) 6.41933 1.72005i 0.578812 0.155092i
\(124\) 4.77235 + 9.01039i 0.428570 + 0.809157i
\(125\) −3.51497 + 10.6134i −0.314388 + 0.949295i
\(126\) −10.1201 + 5.59902i −0.901568 + 0.498801i
\(127\) 0.752858 + 2.80971i 0.0668054 + 0.249321i 0.991251 0.131994i \(-0.0421380\pi\)
−0.924445 + 0.381315i \(0.875471\pi\)
\(128\) 1.51153 + 11.2123i 0.133602 + 0.991035i
\(129\) −4.85637 2.80383i −0.427580 0.246863i
\(130\) −1.94263 + 15.4774i −0.170380 + 1.35746i
\(131\) 14.6261 8.44440i 1.27789 0.737790i 0.301430 0.953488i \(-0.402536\pi\)
0.976460 + 0.215698i \(0.0692027\pi\)
\(132\) 0.922616 0.211442i 0.0803034 0.0184036i
\(133\) −8.51010 17.5287i −0.737919 1.51993i
\(134\) −3.81191 6.88992i −0.329299 0.595199i
\(135\) −11.5432 + 1.80597i −0.993476 + 0.155433i
\(136\) 5.66118 + 11.1772i 0.485442 + 0.958437i
\(137\) 10.2285 2.74073i 0.873884 0.234156i 0.206117 0.978527i \(-0.433917\pi\)
0.667767 + 0.744371i \(0.267250\pi\)
\(138\) 2.25247 + 9.06520i 0.191743 + 0.771681i
\(139\) −7.14724 + 12.3794i −0.606221 + 1.05000i 0.385637 + 0.922651i \(0.373982\pi\)
−0.991857 + 0.127354i \(0.959351\pi\)
\(140\) 16.0078 11.9754i 1.35291 1.01210i
\(141\) 0.664990 0.0560023
\(142\) 8.52359 8.21791i 0.715284 0.689632i
\(143\) −2.08426 + 0.558476i −0.174295 + 0.0467021i
\(144\) 6.58754 3.18679i 0.548962 0.265566i
\(145\) 7.63550 + 17.2369i 0.634093 + 1.43145i
\(146\) 12.0994 + 0.220920i 1.00135 + 0.0182834i
\(147\) 13.5679 + 3.63550i 1.11906 + 0.299851i
\(148\) 1.06429 + 0.327258i 0.0874843 + 0.0269004i
\(149\) −12.3419 + 7.12557i −1.01108 + 0.583749i −0.911509 0.411281i \(-0.865082\pi\)
−0.0995750 + 0.995030i \(0.531748\pi\)
\(150\) 7.32613 2.20325i 0.598176 0.179894i
\(151\) 15.6648i 1.27478i −0.770541 0.637390i \(-0.780014\pi\)
0.770541 0.637390i \(-0.219986\pi\)
\(152\) 4.76933 + 11.3690i 0.386844 + 0.922145i
\(153\) 5.73041 5.73041i 0.463276 0.463276i
\(154\) 2.36928 + 1.42620i 0.190922 + 0.114926i
\(155\) −6.71794 + 9.20991i −0.539598 + 0.739758i
\(156\) 9.43235 4.99584i 0.755192 0.399988i
\(157\) −3.11691 + 11.6325i −0.248756 + 0.928371i 0.722702 + 0.691160i \(0.242900\pi\)
−0.971458 + 0.237211i \(0.923767\pi\)
\(158\) 9.53177 + 9.88632i 0.758307 + 0.786514i
\(159\) −2.33538 −0.185207
\(160\) −10.5281 + 7.01129i −0.832323 + 0.554291i
\(161\) −13.6452 + 23.6342i −1.07539 + 1.86264i
\(162\) 0.161595 + 0.167606i 0.0126961 + 0.0131684i
\(163\) 10.0622 + 10.0622i 0.788135 + 0.788135i 0.981188 0.193054i \(-0.0618391\pi\)
−0.193054 + 0.981188i \(0.561839\pi\)
\(164\) −10.4080 6.52693i −0.812730 0.509668i
\(165\) 0.664432 + 0.823674i 0.0517260 + 0.0641229i
\(166\) 0.428238 + 0.257780i 0.0332377 + 0.0200076i
\(167\) −1.83624 6.85296i −0.142093 0.530298i −0.999868 0.0162720i \(-0.994820\pi\)
0.857775 0.514026i \(-0.171846\pi\)
\(168\) −12.9997 4.25851i −1.00295 0.328551i
\(169\) −9.81422 + 5.66624i −0.754940 + 0.435865i
\(170\) −8.46025 + 11.1646i −0.648872 + 0.856284i
\(171\) 6.02787 5.22083i 0.460963 0.399247i
\(172\) 2.31566 + 10.1043i 0.176567 + 0.770443i
\(173\) −7.37110 1.97508i −0.560415 0.150163i −0.0325178 0.999471i \(-0.510353\pi\)
−0.527897 + 0.849309i \(0.677019\pi\)
\(174\) 6.65284 11.0521i 0.504351 0.837855i
\(175\) 19.8767 + 10.2222i 1.50254 + 0.772726i
\(176\) −1.44745 0.983102i −0.109106 0.0741041i
\(177\) −9.05316 + 2.42579i −0.680478 + 0.182333i
\(178\) 15.5279 + 4.46607i 1.16387 + 0.334746i
\(179\) 2.19326 0.163932 0.0819661 0.996635i \(-0.473880\pi\)
0.0819661 + 0.996635i \(0.473880\pi\)
\(180\) 6.42960 + 5.05960i 0.479234 + 0.377120i
\(181\) 7.34710 12.7255i 0.546105 0.945882i −0.452431 0.891799i \(-0.649443\pi\)
0.998536 0.0540828i \(-0.0172235\pi\)
\(182\) 29.9696 + 8.61970i 2.22149 + 0.638935i
\(183\) −10.9166 10.9166i −0.806977 0.806977i
\(184\) 9.43934 14.4589i 0.695877 1.06592i
\(185\) 0.192428 + 1.22994i 0.0141476 + 0.0904267i
\(186\) 7.79906 + 0.142401i 0.571855 + 0.0104413i
\(187\) −1.87169 0.501518i −0.136872 0.0366747i
\(188\) −0.836927 0.900391i −0.0610392 0.0656678i
\(189\) 23.3572i 1.69899i
\(190\) −9.08984 + 10.3622i −0.659446 + 0.751752i
\(191\) 0.186996i 0.0135305i 0.999977 + 0.00676527i \(0.00215347\pi\)
−0.999977 + 0.00676527i \(0.997847\pi\)
\(192\) 8.06536 + 3.14069i 0.582067 + 0.226660i
\(193\) 3.39737 + 0.910322i 0.244548 + 0.0655264i 0.379011 0.925392i \(-0.376264\pi\)
−0.134463 + 0.990919i \(0.542931\pi\)
\(194\) −0.137950 + 7.55531i −0.00990425 + 0.542439i
\(195\) 9.64121 + 7.03254i 0.690421 + 0.503611i
\(196\) −12.1535 22.9462i −0.868106 1.63902i
\(197\) −2.46215 2.46215i −0.175421 0.175421i 0.613935 0.789356i \(-0.289586\pi\)
−0.789356 + 0.613935i \(0.789586\pi\)
\(198\) −0.312830 + 1.08767i −0.0222319 + 0.0772973i
\(199\) 6.80057 11.7789i 0.482079 0.834986i −0.517709 0.855557i \(-0.673215\pi\)
0.999788 + 0.0205707i \(0.00654831\pi\)
\(200\) −12.2035 7.14661i −0.862920 0.505341i
\(201\) −6.02391 −0.424894
\(202\) 3.81477 13.2635i 0.268406 0.933214i
\(203\) 36.4046 9.75458i 2.55510 0.684637i
\(204\) 9.57871 + 0.349907i 0.670644 + 0.0244984i
\(205\) 1.46147 13.6574i 0.102074 0.953873i
\(206\) −3.34773 2.01518i −0.233248 0.140404i
\(207\) −10.7882 2.89069i −0.749832 0.200917i
\(208\) −18.6355 6.48377i −1.29214 0.449568i
\(209\) −1.80173 0.624035i −0.124629 0.0431654i
\(210\) −2.08780 15.1509i −0.144072 1.04551i
\(211\) −13.4704 + 7.77715i −0.927342 + 0.535401i −0.885970 0.463743i \(-0.846506\pi\)
−0.0413720 + 0.999144i \(0.513173\pi\)
\(212\) 2.93920 + 3.16208i 0.201865 + 0.217173i
\(213\) −2.34436 8.74927i −0.160633 0.599490i
\(214\) −0.361588 + 0.600689i −0.0247176 + 0.0410623i
\(215\) −9.02068 + 7.27670i −0.615205 + 0.496267i
\(216\) 0.809025 14.7565i 0.0550472 1.00405i
\(217\) 16.1148 + 16.1148i 1.09394 + 1.09394i
\(218\) −2.62637 + 2.53218i −0.177880 + 0.171501i
\(219\) 4.62895 8.01757i 0.312795 0.541777i
\(220\) 0.279022 1.93628i 0.0188117 0.130544i
\(221\) −21.8509 −1.46985
\(222\) 0.613233 0.591241i 0.0411575 0.0396815i
\(223\) 0.991401 3.69996i 0.0663891 0.247768i −0.924754 0.380565i \(-0.875729\pi\)
0.991143 + 0.132798i \(0.0423961\pi\)
\(224\) 10.5948 + 22.9610i 0.707895 + 1.53415i
\(225\) −1.93555 + 8.94023i −0.129036 + 0.596015i
\(226\) 4.82291 8.01208i 0.320815 0.532956i
\(227\) 14.7897 14.7897i 0.981630 0.981630i −0.0182047 0.999834i \(-0.505795\pi\)
0.999834 + 0.0182047i \(0.00579504\pi\)
\(228\) 9.37678 + 1.01794i 0.620993 + 0.0674146i
\(229\) 7.67335i 0.507069i −0.967326 0.253535i \(-0.918407\pi\)
0.967326 0.253535i \(-0.0815932\pi\)
\(230\) 19.1552 + 2.40424i 1.26305 + 0.158531i
\(231\) 1.83218 1.05781i 0.120548 0.0695987i
\(232\) −23.3374 + 4.90175i −1.53217 + 0.321816i
\(233\) 1.39055 + 0.372596i 0.0910977 + 0.0244095i 0.304080 0.952647i \(-0.401651\pi\)
−0.212982 + 0.977056i \(0.568318\pi\)
\(234\) −0.232987 + 12.7603i −0.0152308 + 0.834168i
\(235\) 0.494953 1.28217i 0.0322872 0.0836396i
\(236\) 14.6784 + 9.20492i 0.955483 + 0.599189i
\(237\) 10.1481 2.71917i 0.659189 0.176629i
\(238\) 19.4371 + 20.1601i 1.25992 + 1.30678i
\(239\) −10.8222 −0.700029 −0.350015 0.936744i \(-0.613823\pi\)
−0.350015 + 0.936744i \(0.613823\pi\)
\(240\) 0.794242 + 9.64425i 0.0512681 + 0.622534i
\(241\) 10.7069 18.5449i 0.689693 1.19458i −0.282245 0.959343i \(-0.591079\pi\)
0.971937 0.235240i \(-0.0755877\pi\)
\(242\) −14.8347 + 3.68604i −0.953608 + 0.236947i
\(243\) −14.9690 + 4.01093i −0.960262 + 0.257301i
\(244\) −1.04183 + 28.5201i −0.0666962 + 1.82581i
\(245\) 17.1082 23.4543i 1.09300 1.49844i
\(246\) −8.22382 + 4.54990i −0.524331 + 0.290091i
\(247\) −21.4464 1.53868i −1.36460 0.0979039i
\(248\) −9.62274 10.7391i −0.611045 0.681932i
\(249\) 0.331159 0.191194i 0.0209863 0.0121165i
\(250\) 1.20476 15.7654i 0.0761954 0.997093i
\(251\) 3.42779 + 1.97904i 0.216360 + 0.124916i 0.604264 0.796784i \(-0.293467\pi\)
−0.387904 + 0.921700i \(0.626801\pi\)
\(252\) 11.9802 11.1358i 0.754680 0.701487i
\(253\) 0.691181 + 2.57952i 0.0434542 + 0.162173i
\(254\) −1.99147 3.59952i −0.124956 0.225854i
\(255\) 4.34033 + 9.79818i 0.271802 + 0.613586i
\(256\) −5.89823 14.8732i −0.368640 0.929572i
\(257\) −0.0199819 + 0.00535414i −0.00124644 + 0.000333982i −0.259442 0.965759i \(-0.583539\pi\)
0.258196 + 0.966093i \(0.416872\pi\)
\(258\) 7.62146 + 2.19205i 0.474491 + 0.136471i
\(259\) 2.48874 0.154643
\(260\) −2.61200 21.9050i −0.161989 1.35849i
\(261\) 7.71218 + 13.3579i 0.477372 + 0.826832i
\(262\) −17.1943 + 16.5777i −1.06227 + 1.02417i
\(263\) −3.33956 + 12.4634i −0.205926 + 0.768528i 0.783239 + 0.621721i \(0.213566\pi\)
−0.989165 + 0.146807i \(0.953100\pi\)
\(264\) −1.19416 + 0.604836i −0.0734957 + 0.0372251i
\(265\) −1.73822 + 4.50285i −0.106778 + 0.276608i
\(266\) 17.6577 + 21.1556i 1.08266 + 1.29714i
\(267\) 8.74045 8.74045i 0.534907 0.534907i
\(268\) 7.58142 + 8.15632i 0.463109 + 0.498226i
\(269\) 12.6052 7.27763i 0.768554 0.443725i −0.0638047 0.997962i \(-0.520323\pi\)
0.832358 + 0.554238i \(0.186990\pi\)
\(270\) 15.2269 6.41518i 0.926677 0.390415i
\(271\) −18.7322 + 10.8150i −1.13790 + 0.656966i −0.945909 0.324431i \(-0.894827\pi\)
−0.191989 + 0.981397i \(0.561494\pi\)
\(272\) −11.5816 13.4099i −0.702236 0.813093i
\(273\) 16.8694 16.8694i 1.02098 1.02098i
\(274\) −13.1038 + 7.24981i −0.791630 + 0.437977i
\(275\) 2.08267 0.668033i 0.125590 0.0402839i
\(276\) −6.18295 11.6736i −0.372170 0.702671i
\(277\) −10.8094 10.8094i −0.649474 0.649474i 0.303392 0.952866i \(-0.401881\pi\)
−0.952866 + 0.303392i \(0.901881\pi\)
\(278\) 5.58774 19.4278i 0.335130 1.16520i
\(279\) −4.66341 + 8.07727i −0.279191 + 0.483573i
\(280\) −17.8865 + 21.8951i −1.06892 + 1.30848i
\(281\) −7.60541 + 13.1730i −0.453701 + 0.785833i −0.998612 0.0526606i \(-0.983230\pi\)
0.544912 + 0.838493i \(0.316563\pi\)
\(282\) −0.912686 + 0.226779i −0.0543496 + 0.0135045i
\(283\) 0.596995 2.22802i 0.0354877 0.132442i −0.945909 0.324431i \(-0.894827\pi\)
0.981397 + 0.191989i \(0.0614938\pi\)
\(284\) −8.89593 + 14.1857i −0.527876 + 0.841766i
\(285\) 3.57003 + 9.92246i 0.211470 + 0.587756i
\(286\) 2.67015 1.47729i 0.157889 0.0873538i
\(287\) −26.5234 7.10693i −1.56563 0.419509i
\(288\) −7.95449 + 6.62034i −0.468723 + 0.390107i
\(289\) −2.27102 1.31118i −0.133590 0.0771280i
\(290\) −16.3578 21.0534i −0.960564 1.23630i
\(291\) 5.00647 + 2.89048i 0.293484 + 0.169443i
\(292\) −16.6815 + 3.82301i −0.976212 + 0.223725i
\(293\) −18.0484 + 18.0484i −1.05440 + 1.05440i −0.0559678 + 0.998433i \(0.517824\pi\)
−0.998433 + 0.0559678i \(0.982176\pi\)
\(294\) −19.8614 0.362644i −1.15834 0.0211498i
\(295\) −2.06111 + 19.2610i −0.120002 + 1.12142i
\(296\) −1.57232 0.0862026i −0.0913895 0.00501042i
\(297\) 1.61618 + 1.61618i 0.0937805 + 0.0937805i
\(298\) 14.5089 13.9886i 0.840480 0.810338i
\(299\) 15.0572 + 26.0798i 0.870779 + 1.50823i
\(300\) −9.30360 + 5.52232i −0.537144 + 0.318831i
\(301\) 11.5849 + 20.0656i 0.667741 + 1.15656i
\(302\) 5.34210 + 21.4996i 0.307404 + 1.23716i
\(303\) −7.46581 7.46581i −0.428900 0.428900i
\(304\) −10.4229 13.9772i −0.597796 0.801648i
\(305\) −29.1735 + 12.9231i −1.67047 + 0.739973i
\(306\) −5.91065 + 9.81910i −0.337889 + 0.561321i
\(307\) 24.8698 + 6.66384i 1.41939 + 0.380325i 0.885269 0.465080i \(-0.153975\pi\)
0.534125 + 0.845406i \(0.320641\pi\)
\(308\) −3.73816 1.14944i −0.213002 0.0654956i
\(309\) −2.58882 + 1.49466i −0.147273 + 0.0850280i
\(310\) 6.07941 14.9314i 0.345288 0.848047i
\(311\) 16.9091i 0.958826i −0.877589 0.479413i \(-0.840850\pi\)
0.877589 0.479413i \(-0.159150\pi\)
\(312\) −11.2420 + 10.0734i −0.636452 + 0.570293i
\(313\) −0.235617 0.879334i −0.0133178 0.0497029i 0.958947 0.283585i \(-0.0915237\pi\)
−0.972265 + 0.233882i \(0.924857\pi\)
\(314\) 0.310915 17.0283i 0.0175459 0.960961i
\(315\) 17.0600 + 6.58561i 0.961220 + 0.371057i
\(316\) −16.4537 10.3182i −0.925591 0.580443i
\(317\) −21.1013 + 5.65406i −1.18516 + 0.317564i −0.796973 0.604015i \(-0.793567\pi\)
−0.388191 + 0.921579i \(0.626900\pi\)
\(318\) 3.20526 0.796426i 0.179742 0.0446613i
\(319\) 1.84402 3.19394i 0.103246 0.178827i
\(320\) 12.0586 13.2132i 0.674098 0.738642i
\(321\) 0.268189 + 0.464516i 0.0149688 + 0.0259268i
\(322\) 10.6679 37.0909i 0.594499 2.06700i
\(323\) −15.9880 10.8262i −0.889599 0.602387i
\(324\) −0.278944 0.174927i −0.0154969 0.00971819i
\(325\) 20.7354 13.3549i 1.15019 0.740798i
\(326\) −17.2417 10.3787i −0.954929 0.574824i
\(327\) 0.722366 + 2.69591i 0.0399469 + 0.149084i
\(328\) 16.5107 + 5.40867i 0.911649 + 0.298644i
\(329\) −2.37950 1.37380i −0.131186 0.0757403i
\(330\) −1.19281 0.903887i −0.0656623 0.0497573i
\(331\) 20.0886i 1.10417i −0.833787 0.552086i \(-0.813832\pi\)
0.833787 0.552086i \(-0.186168\pi\)
\(332\) −0.675657 0.207757i −0.0370815 0.0114021i
\(333\) 0.263615 + 0.983825i 0.0144460 + 0.0539133i
\(334\) 4.85725 + 8.77934i 0.265777 + 0.480384i
\(335\) −4.48360 + 11.6147i −0.244965 + 0.634580i
\(336\) 19.2940 + 1.41149i 1.05258 + 0.0770032i
\(337\) −2.55346 + 9.52965i −0.139096 + 0.519113i 0.860852 + 0.508856i \(0.169932\pi\)
−0.999947 + 0.0102567i \(0.996735\pi\)
\(338\) 11.5375 11.1237i 0.627556 0.605050i
\(339\) −3.57714 6.19578i −0.194283 0.336509i
\(340\) 7.80411 18.2083i 0.423237 0.987485i
\(341\) 2.23010 0.120766
\(342\) −6.49269 + 9.22115i −0.351084 + 0.498622i
\(343\) −18.9120 18.9120i −1.02115 1.02115i
\(344\) −6.62402 13.0782i −0.357143 0.705129i
\(345\) 8.70361 11.9321i 0.468586 0.642405i
\(346\) 10.7902 + 0.197016i 0.580087 + 0.0105917i
\(347\) 6.87003 + 1.84082i 0.368803 + 0.0988204i 0.438460 0.898751i \(-0.355524\pi\)
−0.0696576 + 0.997571i \(0.522191\pi\)
\(348\) −5.36184 + 17.4375i −0.287425 + 0.934750i
\(349\) 4.12577i 0.220847i −0.993885 0.110424i \(-0.964779\pi\)
0.993885 0.110424i \(-0.0352208\pi\)
\(350\) −30.7664 7.25130i −1.64453 0.387598i
\(351\) 22.3211 + 12.8871i 1.19141 + 0.687861i
\(352\) 2.32187 + 0.855668i 0.123756 + 0.0456073i
\(353\) 14.8481 14.8481i 0.790284 0.790284i −0.191256 0.981540i \(-0.561256\pi\)
0.981540 + 0.191256i \(0.0612560\pi\)
\(354\) 11.5980 6.41672i 0.616428 0.341045i
\(355\) −18.6144 1.99192i −0.987950 0.105720i
\(356\) −22.8348 0.834148i −1.21024 0.0442098i
\(357\) 20.6939 5.54490i 1.09523 0.293467i
\(358\) −3.01021 + 0.747961i −0.159094 + 0.0395310i
\(359\) −3.08332 5.34047i −0.162732 0.281859i 0.773116 0.634265i \(-0.218697\pi\)
−0.935847 + 0.352405i \(0.885364\pi\)
\(360\) −10.5499 4.75153i −0.556031 0.250428i
\(361\) −14.9298 11.7517i −0.785778 0.618509i
\(362\) −5.74399 + 19.9711i −0.301897 + 1.04966i
\(363\) −3.02663 + 11.2955i −0.158857 + 0.592861i
\(364\) −44.0722 1.60994i −2.31001 0.0843838i
\(365\) −12.0134 14.8926i −0.628809 0.779514i
\(366\) 18.7056 + 11.2599i 0.977759 + 0.588566i
\(367\) 0.258087 + 0.963195i 0.0134720 + 0.0502784i 0.972335 0.233592i \(-0.0750481\pi\)
−0.958863 + 0.283871i \(0.908381\pi\)
\(368\) −8.02443 + 23.0636i −0.418302 + 1.20227i
\(369\) 11.2378i 0.585015i
\(370\) −0.683544 1.62244i −0.0355358 0.0843466i
\(371\) 8.35655 + 4.82466i 0.433851 + 0.250484i
\(372\) −10.7526 + 2.46424i −0.557497 + 0.127765i
\(373\) 10.8891 10.8891i 0.563818 0.563818i −0.366572 0.930390i \(-0.619469\pi\)
0.930390 + 0.366572i \(0.119469\pi\)
\(374\) 2.73989 + 0.0500269i 0.141676 + 0.00258683i
\(375\) −10.1073 6.64526i −0.521937 0.343160i
\(376\) 1.45572 + 0.950354i 0.0750732 + 0.0490108i
\(377\) 10.7639 40.1716i 0.554371 2.06894i
\(378\) −7.96544 32.0573i −0.409698 1.64885i
\(379\) 6.69029 0.343657 0.171828 0.985127i \(-0.445033\pi\)
0.171828 + 0.985127i \(0.445033\pi\)
\(380\) 8.94184 17.3218i 0.458707 0.888588i
\(381\) −3.14708 −0.161230
\(382\) −0.0637706 0.256648i −0.00326279 0.0131313i
\(383\) −1.07021 + 3.99408i −0.0546852 + 0.204088i −0.987863 0.155327i \(-0.950357\pi\)
0.933178 + 0.359415i \(0.117024\pi\)
\(384\) −12.1406 1.56003i −0.619547 0.0796101i
\(385\) −0.675873 4.31996i −0.0344457 0.220166i
\(386\) −4.97326 0.0908055i −0.253133 0.00462188i
\(387\) −6.70503 + 6.70503i −0.340836 + 0.340836i
\(388\) −2.38723 10.4165i −0.121193 0.528820i
\(389\) −20.7707 11.9920i −1.05311 0.608016i −0.129595 0.991567i \(-0.541368\pi\)
−0.923520 + 0.383551i \(0.874701\pi\)
\(390\) −15.6306 6.36411i −0.791489 0.322259i
\(391\) 27.0431i 1.36763i
\(392\) 24.5057 + 27.3486i 1.23772 + 1.38131i
\(393\) 4.72918 + 17.6495i 0.238556 + 0.890302i
\(394\) 4.21891 + 2.53959i 0.212546 + 0.127943i
\(395\) 2.31039 21.5904i 0.116248 1.08633i
\(396\) 0.0584287 1.59949i 0.00293615 0.0803773i
\(397\) 2.55203 9.52429i 0.128082 0.478010i −0.871848 0.489776i \(-0.837079\pi\)
0.999931 + 0.0117657i \(0.00374523\pi\)
\(398\) −5.31671 + 18.4855i −0.266503 + 0.926595i
\(399\) 20.7013 3.98507i 1.03636 0.199503i
\(400\) 19.1863 + 5.64685i 0.959314 + 0.282342i
\(401\) −12.2269 21.1777i −0.610585 1.05756i −0.991142 0.132806i \(-0.957601\pi\)
0.380557 0.924757i \(-0.375732\pi\)
\(402\) 8.26769 2.05431i 0.412355 0.102460i
\(403\) 24.2910 6.50875i 1.21002 0.324224i
\(404\) −0.712503 + 19.5048i −0.0354483 + 0.970399i
\(405\) 0.0391687 0.366030i 0.00194631 0.0181882i
\(406\) −46.6380 + 25.8029i −2.31460 + 1.28058i
\(407\) 0.172206 0.172206i 0.00853594 0.00853594i
\(408\) −13.2659 + 2.78636i −0.656761 + 0.137945i
\(409\) 18.6522 + 10.7689i 0.922293 + 0.532486i 0.884366 0.466794i \(-0.154591\pi\)
0.0379271 + 0.999281i \(0.487925\pi\)
\(410\) 2.65169 + 19.2429i 0.130958 + 0.950338i
\(411\) 11.4568i 0.565120i
\(412\) 5.28193 + 1.62413i 0.260222 + 0.0800153i
\(413\) 37.4059 + 10.0229i 1.84062 + 0.493194i
\(414\) 15.7924 + 0.288349i 0.776154 + 0.0141716i
\(415\) −0.122161 0.780814i −0.00599665 0.0383287i
\(416\) 27.7879 + 2.54365i 1.36242 + 0.124713i
\(417\) −10.9356 10.9356i −0.535521 0.535521i
\(418\) 2.68566 + 0.242037i 0.131360 + 0.0118384i
\(419\) −32.1351 −1.56990 −0.784951 0.619558i \(-0.787312\pi\)
−0.784951 + 0.619558i \(0.787312\pi\)
\(420\) 8.03232 + 20.0823i 0.391937 + 0.979913i
\(421\) 17.8046 + 30.8385i 0.867745 + 1.50298i 0.864295 + 0.502985i \(0.167765\pi\)
0.00344967 + 0.999994i \(0.498902\pi\)
\(422\) 15.8357 15.2678i 0.770868 0.743223i
\(423\) 0.291035 1.08616i 0.0141506 0.0528108i
\(424\) −5.11235 3.33755i −0.248278 0.162086i
\(425\) 22.1224 1.07581i 1.07309 0.0521842i
\(426\) 6.20132 + 11.2087i 0.300455 + 0.543064i
\(427\) 16.5096 + 61.6148i 0.798957 + 2.98175i
\(428\) 0.291421 0.947745i 0.0140864 0.0458110i
\(429\) 2.33453i 0.112712i
\(430\) 9.89915 13.0634i 0.477380 0.629974i
\(431\) −10.3906 5.99901i −0.500497 0.288962i 0.228422 0.973562i \(-0.426643\pi\)
−0.728919 + 0.684600i \(0.759977\pi\)
\(432\) 3.92200 + 20.5289i 0.188697 + 0.987698i
\(433\) 8.20988 + 30.6397i 0.394542 + 1.47245i 0.822559 + 0.568679i \(0.192545\pi\)
−0.428018 + 0.903770i \(0.640788\pi\)
\(434\) −27.6128 16.6216i −1.32546 0.797864i
\(435\) −20.1515 + 3.15277i −0.966189 + 0.151164i
\(436\) 2.74110 4.37103i 0.131275 0.209334i
\(437\) −1.90430 + 26.5425i −0.0910950 + 1.26970i
\(438\) −3.61893 + 12.5826i −0.172919 + 0.601218i
\(439\) 8.73943 + 15.1371i 0.417110 + 0.722456i 0.995647 0.0931997i \(-0.0297095\pi\)
−0.578537 + 0.815656i \(0.696376\pi\)
\(440\) 0.277369 + 2.75265i 0.0132230 + 0.131228i
\(441\) 11.8760 20.5699i 0.565526 0.979520i
\(442\) 29.9899 7.45173i 1.42647 0.354443i
\(443\) 8.46673 2.26865i 0.402267 0.107787i −0.0520125 0.998646i \(-0.516564\pi\)
0.454279 + 0.890859i \(0.349897\pi\)
\(444\) −0.640021 + 1.02060i −0.0303741 + 0.0484353i
\(445\) −10.3470 23.3580i −0.490493 1.10728i
\(446\) −0.0988932 + 5.41621i −0.00468273 + 0.256465i
\(447\) −3.99059 14.8931i −0.188748 0.704419i
\(448\) −22.3715 27.9004i −1.05695 1.31817i
\(449\) 3.01001i 0.142051i −0.997474 0.0710256i \(-0.977373\pi\)
0.997474 0.0710256i \(-0.0226272\pi\)
\(450\) −0.392358 12.9304i −0.0184959 0.609543i
\(451\) −2.32702 + 1.34351i −0.109575 + 0.0632633i
\(452\) −3.88701 + 12.6412i −0.182830 + 0.594590i
\(453\) 16.3704 + 4.38643i 0.769148 + 0.206093i
\(454\) −15.2549 + 25.3423i −0.715949 + 1.18937i
\(455\) −19.9701 45.0819i −0.936212 2.11347i
\(456\) −13.2166 + 1.80063i −0.618924 + 0.0843224i
\(457\) −7.39232 7.39232i −0.345798 0.345798i 0.512744 0.858542i \(-0.328629\pi\)
−0.858542 + 0.512744i \(0.828629\pi\)
\(458\) 2.61682 + 10.5315i 0.122276 + 0.492106i
\(459\) 11.5727 + 20.0446i 0.540169 + 0.935601i
\(460\) −27.1100 + 3.23266i −1.26401 + 0.150723i
\(461\) −14.5091 25.1305i −0.675757 1.17044i −0.976247 0.216660i \(-0.930484\pi\)
0.300491 0.953785i \(-0.402850\pi\)
\(462\) −2.15389 + 2.07664i −0.100208 + 0.0966142i
\(463\) 25.3008 + 25.3008i 1.17583 + 1.17583i 0.980797 + 0.195029i \(0.0624801\pi\)
0.195029 + 0.980797i \(0.437520\pi\)
\(464\) 30.3585 14.6862i 1.40936 0.681791i
\(465\) −7.74362 9.59950i −0.359102 0.445166i
\(466\) −2.03556 0.0371668i −0.0942955 0.00172172i
\(467\) −5.18580 + 5.18580i −0.239970 + 0.239970i −0.816838 0.576867i \(-0.804275\pi\)
0.576867 + 0.816838i \(0.304275\pi\)
\(468\) −4.03184 17.5927i −0.186372 0.813224i
\(469\) 21.5550 + 12.4448i 0.995318 + 0.574647i
\(470\) −0.242059 + 1.92854i −0.0111653 + 0.0889571i
\(471\) −11.2837 6.51462i −0.519923 0.300178i
\(472\) −23.2849 7.62783i −1.07178 0.351099i
\(473\) 2.19003 + 0.586816i 0.100697 + 0.0269818i
\(474\) −13.0007 + 7.19277i −0.597143 + 0.330375i
\(475\) 21.7887 + 0.501908i 0.999735 + 0.0230291i
\(476\) −33.5521 21.0407i −1.53786 0.964400i
\(477\) −1.02209 + 3.81448i −0.0467981 + 0.174653i
\(478\) 14.8532 3.69066i 0.679371 0.168807i
\(479\) 7.67065 13.2860i 0.350481 0.607051i −0.635853 0.771810i \(-0.719352\pi\)
0.986334 + 0.164760i \(0.0526849\pi\)
\(480\) −4.37903 12.9657i −0.199874 0.591800i
\(481\) 1.37313 2.37833i 0.0626094 0.108443i
\(482\) −8.37071 + 29.1039i −0.381275 + 1.32564i
\(483\) −20.8779 20.8779i −0.949978 0.949978i
\(484\) 19.1032 10.1180i 0.868328 0.459910i
\(485\) 9.29947 7.50160i 0.422267 0.340630i
\(486\) 19.1768 10.6097i 0.869878 0.481268i
\(487\) 8.01939 8.01939i 0.363393 0.363393i −0.501667 0.865061i \(-0.667280\pi\)
0.865061 + 0.501667i \(0.167280\pi\)
\(488\) −8.29622 39.4985i −0.375552 1.78801i
\(489\) −13.3331 + 7.69787i −0.602943 + 0.348110i
\(490\) −15.4821 + 38.0250i −0.699410 + 1.71779i
\(491\) −9.49150 + 5.47992i −0.428345 + 0.247305i −0.698641 0.715472i \(-0.746212\pi\)
0.270296 + 0.962777i \(0.412878\pi\)
\(492\) 9.73538 9.04919i 0.438905 0.407969i
\(493\) 26.4084 26.4084i 1.18937 1.18937i
\(494\) 29.9595 5.20200i 1.34794 0.234049i
\(495\) 1.63613 0.724763i 0.0735388 0.0325757i
\(496\) 16.8693 + 11.4576i 0.757455 + 0.514460i
\(497\) −9.68643 + 36.1503i −0.434496 + 1.62156i
\(498\) −0.389306 + 0.375344i −0.0174452 + 0.0168196i
\(499\) 18.8036 + 32.5688i 0.841766 + 1.45798i 0.888400 + 0.459069i \(0.151817\pi\)
−0.0466344 + 0.998912i \(0.514850\pi\)
\(500\) 3.72293 + 22.0486i 0.166494 + 0.986042i
\(501\) 7.67583 0.342931
\(502\) −5.37948 1.54722i −0.240098 0.0690558i
\(503\) 12.1160 3.24647i 0.540225 0.144753i 0.0216193 0.999766i \(-0.493118\pi\)
0.518606 + 0.855013i \(0.326451\pi\)
\(504\) −12.6450 + 19.3692i −0.563251 + 0.862771i
\(505\) −19.9517 + 8.83805i −0.887838 + 0.393288i
\(506\) −1.82832 3.30463i −0.0812786 0.146909i
\(507\) −3.17331 11.8430i −0.140932 0.525964i
\(508\) 3.96078 + 4.26112i 0.175731 + 0.189057i
\(509\) −17.3381 10.0101i −0.768497 0.443692i 0.0638411 0.997960i \(-0.479665\pi\)
−0.832338 + 0.554268i \(0.812998\pi\)
\(510\) −9.29845 11.9676i −0.411742 0.529936i
\(511\) −33.1270 + 19.1259i −1.46545 + 0.846080i
\(512\) 13.1674 + 18.4017i 0.581920 + 0.813246i
\(513\) 9.94706 + 20.4885i 0.439173 + 0.904589i
\(514\) 0.0255989 0.0141628i 0.00112912 0.000624695i
\(515\) 0.954991 + 6.10399i 0.0420819 + 0.268974i
\(516\) −11.2078 0.409418i −0.493398 0.0180236i
\(517\) −0.259707 + 0.0695882i −0.0114219 + 0.00306048i
\(518\) −3.41574 + 0.848727i −0.150079 + 0.0372909i
\(519\) 4.12810 7.15008i 0.181203 0.313853i
\(520\) 11.0551 + 29.1734i 0.484798 + 1.27934i
\(521\) 20.9166 0.916374 0.458187 0.888856i \(-0.348499\pi\)
0.458187 + 0.888856i \(0.348499\pi\)
\(522\) −15.1402 15.7034i −0.662669 0.687318i
\(523\) 1.25082 0.335157i 0.0546947 0.0146554i −0.231368 0.972866i \(-0.574320\pi\)
0.286063 + 0.958211i \(0.407653\pi\)
\(524\) 17.9454 28.6162i 0.783948 1.25011i
\(525\) −16.2485 + 17.9096i −0.709143 + 0.781640i
\(526\) 0.333125 18.2447i 0.0145249 0.795506i
\(527\) 21.8136 + 5.84494i 0.950216 + 0.254610i
\(528\) 1.43270 1.23737i 0.0623503 0.0538495i
\(529\) 12.3583 7.13504i 0.537315 0.310219i
\(530\) 0.850086 6.77285i 0.0369254 0.294194i
\(531\) 15.8486i 0.687770i
\(532\) −31.4495 23.0139i −1.36351 0.997781i
\(533\) −21.4256 + 21.4256i −0.928046 + 0.928046i
\(534\) −9.01536 + 14.9768i −0.390133 + 0.648110i
\(535\) 1.09525 0.171356i 0.0473518 0.00740835i
\(536\) −13.1869 8.60891i −0.569586 0.371848i
\(537\) −0.614155 + 2.29206i −0.0265028 + 0.0989096i
\(538\) −14.8185 + 14.2871i −0.638873 + 0.615961i
\(539\) −5.67926 −0.244623
\(540\) −18.7108 + 13.9975i −0.805185 + 0.602355i
\(541\) −7.88305 + 13.6538i −0.338919 + 0.587024i −0.984230 0.176896i \(-0.943394\pi\)
0.645311 + 0.763920i \(0.276728\pi\)
\(542\) 22.0213 21.2316i 0.945896 0.911974i
\(543\) 11.2414 + 11.2414i 0.482416 + 0.482416i
\(544\) 20.4686 + 14.4552i 0.877584 + 0.619760i
\(545\) 5.73565 + 0.613770i 0.245688 + 0.0262910i
\(546\) −17.4000 + 28.9059i −0.744652 + 1.23706i
\(547\) −2.99210 11.1667i −0.127933 0.477452i 0.871994 0.489516i \(-0.162827\pi\)
−0.999927 + 0.0120639i \(0.996160\pi\)
\(548\) 15.5123 14.4190i 0.662654 0.615948i
\(549\) −22.6082 + 13.0529i −0.964895 + 0.557082i
\(550\) −2.63060 + 1.62711i −0.112169 + 0.0693801i
\(551\) 27.7792 24.0600i 1.18343 1.02499i
\(552\) 12.4670 + 13.9133i 0.530631 + 0.592189i
\(553\) −41.9299 11.2351i −1.78304 0.477764i
\(554\) 18.5220 + 11.1494i 0.786923 + 0.473692i
\(555\) −1.33922 0.143310i −0.0568468 0.00608316i
\(556\) −1.04365 + 28.5699i −0.0442605 + 1.21163i
\(557\) 23.8340 6.38631i 1.00988 0.270597i 0.284301 0.958735i \(-0.408238\pi\)
0.725580 + 0.688138i \(0.241572\pi\)
\(558\) 3.64588 12.6762i 0.154342 0.536628i
\(559\) 25.5672 1.08138
\(560\) 17.0821 36.1503i 0.721849 1.52763i
\(561\) 1.04822 1.81557i 0.0442558 0.0766533i
\(562\) 5.94594 20.6733i 0.250815 0.872049i
\(563\) −11.6803 11.6803i −0.492264 0.492264i 0.416755 0.909019i \(-0.363167\pi\)
−0.909019 + 0.416755i \(0.863167\pi\)
\(564\) 1.17530 0.622500i 0.0494893 0.0262120i
\(565\) −14.6086 + 2.28556i −0.614588 + 0.0961544i
\(566\) −0.0595508 + 3.26150i −0.00250311 + 0.137091i
\(567\) −0.710850 0.190472i −0.0298529 0.00799906i
\(568\) 7.37178 22.5033i 0.309313 0.944218i
\(569\) 0.174100i 0.00729865i 0.999993 + 0.00364933i \(0.00116162\pi\)
−0.999993 + 0.00364933i \(0.998838\pi\)
\(570\) −8.28362 12.4009i −0.346963 0.519417i
\(571\) 16.8568i 0.705437i −0.935729 0.352719i \(-0.885257\pi\)
0.935729 0.352719i \(-0.114743\pi\)
\(572\) −3.16093 + 2.93814i −0.132165 + 0.122850i
\(573\) −0.195419 0.0523624i −0.00816375 0.00218747i
\(574\) 38.8265 + 0.708923i 1.62059 + 0.0295899i
\(575\) −16.5283 25.6626i −0.689278 1.07020i
\(576\) 8.65966 11.7990i 0.360819 0.491624i
\(577\) 32.0639 + 32.0639i 1.33484 + 1.33484i 0.900984 + 0.433852i \(0.142846\pi\)
0.433852 + 0.900984i \(0.357154\pi\)
\(578\) 3.56408 + 1.02508i 0.148246 + 0.0426378i
\(579\) −1.90266 + 3.29550i −0.0790717 + 0.136956i
\(580\) 29.6306 + 23.3170i 1.23034 + 0.968185i
\(581\) −1.57996 −0.0655476
\(582\) −7.85701 2.25979i −0.325683 0.0936714i
\(583\) 0.912063 0.244386i 0.0377738 0.0101215i
\(584\) 21.5913 10.9358i 0.893454 0.452528i
\(585\) 15.7061 12.6696i 0.649366 0.523824i
\(586\) 18.6161 30.9261i 0.769024 1.27755i
\(587\) 2.92414 + 0.783520i 0.120692 + 0.0323393i 0.318659 0.947869i \(-0.396767\pi\)
−0.197967 + 0.980209i \(0.563434\pi\)
\(588\) 27.3831 6.27555i 1.12926 0.258799i
\(589\) 20.9983 + 7.27282i 0.865219 + 0.299671i
\(590\) −3.73967 27.1382i −0.153960 1.11726i
\(591\) 3.26251 1.88361i 0.134202 0.0774813i
\(592\) 2.18738 0.417893i 0.0899008 0.0171753i
\(593\) 8.41715 + 31.4132i 0.345651 + 1.28999i 0.891850 + 0.452332i \(0.149408\pi\)
−0.546199 + 0.837656i \(0.683926\pi\)
\(594\) −2.76934 1.66702i −0.113627 0.0683986i
\(595\) 4.71131 44.0270i 0.193145 1.80493i
\(596\) −15.1427 + 24.1470i −0.620270 + 0.989100i
\(597\) 10.4052 + 10.4052i 0.425857 + 0.425857i
\(598\) −29.5596 30.6591i −1.20878 1.25374i
\(599\) 4.81591 8.34141i 0.196773 0.340821i −0.750707 0.660635i \(-0.770287\pi\)
0.947480 + 0.319814i \(0.103621\pi\)
\(600\) 10.8857 10.7520i 0.444409 0.438951i
\(601\) −20.1047 −0.820089 −0.410044 0.912066i \(-0.634487\pi\)
−0.410044 + 0.912066i \(0.634487\pi\)
\(602\) −22.7429 23.5889i −0.926931 0.961410i
\(603\) −2.63638 + 9.83912i −0.107362 + 0.400680i
\(604\) −14.6639 27.6859i −0.596664 1.12652i
\(605\) 19.5262 + 14.2429i 0.793854 + 0.579057i
\(606\) 12.7927 + 7.70063i 0.519668 + 0.312817i
\(607\) −15.4846 + 15.4846i −0.628502 + 0.628502i −0.947691 0.319189i \(-0.896589\pi\)
0.319189 + 0.947691i \(0.396589\pi\)
\(608\) 19.0719 + 15.6290i 0.773466 + 0.633838i
\(609\) 40.7759i 1.65232i
\(610\) 35.6330 27.6856i 1.44274 1.12096i
\(611\) −2.62572 + 1.51596i −0.106225 + 0.0613291i
\(612\) 4.76368 15.4922i 0.192560 0.626235i
\(613\) −28.2083 7.55840i −1.13932 0.305281i −0.360645 0.932703i \(-0.617443\pi\)
−0.778679 + 0.627422i \(0.784110\pi\)
\(614\) −36.4058 0.664724i −1.46922 0.0268261i
\(615\) 13.8633 + 5.35163i 0.559024 + 0.215798i
\(616\) 5.52254 + 0.302773i 0.222510 + 0.0121991i
\(617\) −24.2653 + 6.50186i −0.976884 + 0.261755i −0.711732 0.702451i \(-0.752089\pi\)
−0.265152 + 0.964207i \(0.585422\pi\)
\(618\) 3.04339 2.93424i 0.122423 0.118033i
\(619\) −21.9444 −0.882020 −0.441010 0.897502i \(-0.645380\pi\)
−0.441010 + 0.897502i \(0.645380\pi\)
\(620\) −3.25186 + 22.5663i −0.130598 + 0.906284i
\(621\) 15.9493 27.6250i 0.640022 1.10855i
\(622\) 5.76645 + 23.2074i 0.231213 + 0.930531i
\(623\) −49.3324 + 13.2186i −1.97646 + 0.529591i
\(624\) 11.9941 17.6593i 0.480149 0.706939i
\(625\) −20.3356 + 14.5418i −0.813424 + 0.581671i
\(626\) 0.623256 + 1.12652i 0.0249103 + 0.0450246i
\(627\) 1.15666 1.70815i 0.0461927 0.0682170i
\(628\) 5.38037 + 23.4770i 0.214700 + 0.936833i
\(629\) 2.13577 1.23309i 0.0851588 0.0491665i
\(630\) −25.6603 3.22072i −1.02233 0.128317i
\(631\) 12.4729 + 7.20126i 0.496540 + 0.286678i 0.727284 0.686337i \(-0.240783\pi\)
−0.230744 + 0.973015i \(0.574116\pi\)
\(632\) 26.1011 + 8.55037i 1.03825 + 0.340115i
\(633\) −4.35550 16.2549i −0.173116 0.646076i
\(634\) 27.0329 14.9562i 1.07361 0.593986i
\(635\) −2.34238 + 6.06791i −0.0929544 + 0.240797i
\(636\) −4.12755 + 2.18616i −0.163668 + 0.0866868i
\(637\) −61.8605 + 16.5755i −2.45100 + 0.656744i
\(638\) −1.44167 + 5.01249i −0.0570761 + 0.198446i
\(639\) −15.3166 −0.605915
\(640\) −12.0442 + 22.2472i −0.476088 + 0.879398i
\(641\) −17.1607 29.7232i −0.677806 1.17399i −0.975640 0.219377i \(-0.929598\pi\)
0.297834 0.954618i \(-0.403736\pi\)
\(642\) −0.526496 0.546080i −0.0207791 0.0215521i
\(643\) 10.9396 40.8270i 0.431414 1.61006i −0.318092 0.948060i \(-0.603042\pi\)
0.749505 0.661998i \(-0.230291\pi\)
\(644\) −1.99249 + 54.5446i −0.0785152 + 2.14936i
\(645\) −5.07852 11.4646i −0.199967 0.451419i
\(646\) 25.6353 + 9.40641i 1.00861 + 0.370090i
\(647\) 24.6531 24.6531i 0.969213 0.969213i −0.0303268 0.999540i \(-0.509655\pi\)
0.999540 + 0.0303268i \(0.00965479\pi\)
\(648\) 0.442500 + 0.144957i 0.0173830 + 0.00569445i
\(649\) 3.28179 1.89474i 0.128822 0.0743752i
\(650\) −23.9046 + 25.4007i −0.937615 + 0.996297i
\(651\) −21.3531 + 12.3282i −0.836894 + 0.483181i
\(652\) 27.2033 + 8.36470i 1.06536 + 0.327587i
\(653\) −7.25587 + 7.25587i −0.283944 + 0.283944i −0.834680 0.550736i \(-0.814347\pi\)
0.550736 + 0.834680i \(0.314347\pi\)
\(654\) −1.91081 3.45373i −0.0747186 0.135052i
\(655\) 37.5501 + 4.01822i 1.46720 + 0.157005i
\(656\) −24.5051 1.79271i −0.956762 0.0699937i
\(657\) −11.0696 11.0696i −0.431866 0.431866i
\(658\) 3.73432 + 1.07405i 0.145579 + 0.0418707i
\(659\) 0.427287 0.740084i 0.0166448 0.0288296i −0.857583 0.514346i \(-0.828035\pi\)
0.874228 + 0.485516i \(0.161368\pi\)
\(660\) 1.94536 + 0.833785i 0.0757232 + 0.0324550i
\(661\) 4.23148 7.32914i 0.164585 0.285070i −0.771923 0.635717i \(-0.780705\pi\)
0.936508 + 0.350646i \(0.114038\pi\)
\(662\) 6.85076 + 27.5713i 0.266263 + 1.07159i
\(663\) 6.11866 22.8351i 0.237629 0.886844i
\(664\) 0.998177 + 0.0547250i 0.0387368 + 0.00212374i
\(665\) 7.72437 42.8803i 0.299538 1.66283i
\(666\) −0.697317 1.26038i −0.0270205 0.0488387i
\(667\) −49.7171 13.3216i −1.92505 0.515816i
\(668\) −9.66047 10.3930i −0.373775 0.402118i
\(669\) 3.58901 + 2.07212i 0.138759 + 0.0801127i
\(670\) 2.19272 17.4700i 0.0847123 0.674925i
\(671\) 5.40575 + 3.12101i 0.208687 + 0.120485i
\(672\) −26.9620 + 4.64254i −1.04008 + 0.179090i
\(673\) −5.14578 + 5.14578i −0.198355 + 0.198355i −0.799295 0.600939i \(-0.794793\pi\)
0.600939 + 0.799295i \(0.294793\pi\)
\(674\) 0.254710 13.9500i 0.00981107 0.537336i
\(675\) −23.2329 11.9483i −0.894236 0.459889i
\(676\) −12.0415 + 19.2017i −0.463134 + 0.738526i
\(677\) 11.9170 + 11.9170i 0.458007 + 0.458007i 0.898001 0.439994i \(-0.145019\pi\)
−0.439994 + 0.898001i \(0.645019\pi\)
\(678\) 7.02248 + 7.28369i 0.269697 + 0.279728i
\(679\) −11.9429 20.6857i −0.458327 0.793845i
\(680\) −4.50145 + 27.6520i −0.172623 + 1.06040i
\(681\) 11.3145 + 19.5974i 0.433574 + 0.750972i
\(682\) −3.06076 + 0.760522i −0.117203 + 0.0291219i
\(683\) 22.7570 + 22.7570i 0.870774 + 0.870774i 0.992557 0.121783i \(-0.0388611\pi\)
−0.121783 + 0.992557i \(0.538861\pi\)
\(684\) 5.76643 14.8700i 0.220485 0.568569i
\(685\) 22.0898 + 8.52727i 0.844008 + 0.325810i
\(686\) 32.4059 + 19.5069i 1.23726 + 0.744775i
\(687\) 8.01900 + 2.14868i 0.305944 + 0.0819774i
\(688\) 13.5513 + 15.6906i 0.516640 + 0.598198i
\(689\) 9.22125 5.32389i 0.351302 0.202824i
\(690\) −7.87634 + 19.3448i −0.299847 + 0.736443i
\(691\) 41.5008i 1.57876i −0.613902 0.789382i \(-0.710401\pi\)
0.613902 0.789382i \(-0.289599\pi\)
\(692\) −14.8766 + 3.40936i −0.565523 + 0.129604i
\(693\) −0.925907 3.45553i −0.0351723 0.131265i
\(694\) −10.0567 0.183623i −0.381749 0.00697025i
\(695\) −29.2245 + 12.9456i −1.10855 + 0.491056i
\(696\) 1.41236 25.7612i 0.0535352 0.976476i
\(697\) −26.2829 + 7.04249i −0.995538 + 0.266754i
\(698\) 1.40700 + 5.66253i 0.0532556 + 0.214330i
\(699\) −0.778758 + 1.34885i −0.0294553 + 0.0510182i
\(700\) 44.6991 0.539900i 1.68947 0.0204063i
\(701\) −17.8210 30.8669i −0.673090 1.16583i −0.977023 0.213132i \(-0.931634\pi\)
0.303934 0.952693i \(-0.401700\pi\)
\(702\) −35.0300 10.0752i −1.32212 0.380262i
\(703\) 2.18307 1.05987i 0.0823361 0.0399738i
\(704\) −3.47852 0.382569i −0.131102 0.0144186i
\(705\) 1.20133 + 0.876280i 0.0452447 + 0.0330026i
\(706\) −15.3151 + 25.4423i −0.576392 + 0.957534i
\(707\) 11.2909 + 42.1381i 0.424637 + 1.58477i
\(708\) −13.7298 + 12.7620i −0.515997 + 0.479627i
\(709\) 2.11898 + 1.22339i 0.0795799 + 0.0459454i 0.539262 0.842138i \(-0.318703\pi\)
−0.459682 + 0.888084i \(0.652037\pi\)
\(710\) 26.2272 3.61414i 0.984289 0.135636i
\(711\) 17.7654i 0.666254i
\(712\) 31.6248 6.64243i 1.18519 0.248936i
\(713\) −8.05536 30.0630i −0.301675 1.12587i
\(714\) −26.5109 + 14.6674i −0.992147 + 0.548914i
\(715\) −4.50122 1.73759i −0.168336 0.0649823i
\(716\) 3.87638 2.05312i 0.144867 0.0767288i
\(717\) 3.03042 11.3097i 0.113173 0.422368i
\(718\) 6.05304 + 6.27820i 0.225898 + 0.234300i
\(719\) 18.1096 + 31.3667i 0.675372 + 1.16978i 0.976360 + 0.216151i \(0.0693504\pi\)
−0.300988 + 0.953628i \(0.597316\pi\)
\(720\) 16.1000 + 2.92357i 0.600011 + 0.108955i
\(721\) 12.3512 0.459985
\(722\) 24.4984 + 11.0375i 0.911738 + 0.410772i
\(723\) 16.3821 + 16.3821i 0.609258 + 0.609258i
\(724\) 1.07283 29.3688i 0.0398715 1.09148i
\(725\) −8.91990 + 41.2007i −0.331277 + 1.53016i
\(726\) 0.301909 16.5350i 0.0112049 0.613673i
\(727\) −38.6180 10.3476i −1.43226 0.383773i −0.542444 0.840092i \(-0.682501\pi\)
−0.889816 + 0.456319i \(0.849168\pi\)
\(728\) 61.0372 12.8202i 2.26219 0.475147i
\(729\) 17.2603i 0.639270i
\(730\) 21.5669 + 16.3429i 0.798227 + 0.604877i
\(731\) 19.8837 + 11.4798i 0.735424 + 0.424597i
\(732\) −29.5130 9.07492i −1.09083 0.335419i
\(733\) −14.7314 + 14.7314i −0.544115 + 0.544115i −0.924733 0.380617i \(-0.875711\pi\)
0.380617 + 0.924733i \(0.375711\pi\)
\(734\) −0.682695 1.23395i −0.0251987 0.0455459i
\(735\) 19.7202 + 24.4465i 0.727392 + 0.901723i
\(736\) 3.14807 34.3909i 0.116039 1.26766i
\(737\) 2.35259 0.630374i 0.0866587 0.0232201i
\(738\) 3.83238 + 15.4236i 0.141072 + 0.567751i
\(739\) −17.4201 30.1725i −0.640809 1.10991i −0.985253 0.171106i \(-0.945266\pi\)
0.344444 0.938807i \(-0.388067\pi\)
\(740\) 1.49145 + 1.99366i 0.0548266 + 0.0732883i
\(741\) 7.61340 21.9816i 0.279685 0.807516i
\(742\) −13.1145 3.77194i −0.481450 0.138472i
\(743\) −11.6251 + 43.3856i −0.426485 + 1.59166i 0.334172 + 0.942512i \(0.391543\pi\)
−0.760658 + 0.649153i \(0.775123\pi\)
\(744\) 13.9174 7.04905i 0.510236 0.258431i
\(745\) −31.6856 3.39067i −1.16087 0.124224i
\(746\) −11.2316 + 18.6586i −0.411219 + 0.683140i
\(747\) −0.167354 0.624573i −0.00612316 0.0228519i
\(748\) −3.77751 + 0.865715i −0.138119 + 0.0316537i
\(749\) 2.21621i 0.0809784i
\(750\) 16.1382 + 5.67364i 0.589285 + 0.207172i
\(751\) 34.5083 + 19.9234i 1.25922 + 0.727014i 0.972924 0.231126i \(-0.0742409\pi\)
0.286301 + 0.958140i \(0.407574\pi\)
\(752\) −2.32205 0.807901i −0.0846763 0.0294611i
\(753\) −3.02803 + 3.02803i −0.110348 + 0.110348i
\(754\) −1.07371 + 58.8054i −0.0391023 + 2.14157i
\(755\) 20.6420 28.2990i 0.751239 1.02991i
\(756\) 21.8648 + 41.2816i 0.795216 + 1.50140i
\(757\) 3.13996 11.7185i 0.114124 0.425916i −0.885096 0.465409i \(-0.845907\pi\)
0.999220 + 0.0394924i \(0.0125741\pi\)
\(758\) −9.18228 + 2.28157i −0.333516 + 0.0828702i
\(759\) −2.88926 −0.104873
\(760\) −6.36531 + 26.8232i −0.230894 + 0.972979i
\(761\) 29.1528 1.05679 0.528394 0.848999i \(-0.322794\pi\)
0.528394 + 0.848999i \(0.322794\pi\)
\(762\) 4.31931 1.07324i 0.156472 0.0388794i
\(763\) 2.98467 11.1390i 0.108052 0.403257i
\(764\) 0.175048 + 0.330497i 0.00633300 + 0.0119570i
\(765\) 17.9034 2.80104i 0.647297 0.101272i
\(766\) 0.106754 5.84676i 0.00385720 0.211252i
\(767\) 30.2165 30.2165i 1.09105 1.09105i
\(768\) 17.1947 1.99915i 0.620462 0.0721382i