Properties

Label 380.2.v.c.7.4
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.4
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39454 - 0.235046i) q^{2} +(-0.550661 + 2.05509i) q^{3} +(1.88951 + 0.655563i) q^{4} +(-1.04297 - 1.97793i) q^{5} +(1.25096 - 2.73649i) q^{6} +(0.179304 - 0.179304i) q^{7} +(-2.48091 - 1.35833i) q^{8} +(-1.32211 - 0.763319i) q^{9} +O(q^{10})\) \(q+(-1.39454 - 0.235046i) q^{2} +(-0.550661 + 2.05509i) q^{3} +(1.88951 + 0.655563i) q^{4} +(-1.04297 - 1.97793i) q^{5} +(1.25096 - 2.73649i) q^{6} +(0.179304 - 0.179304i) q^{7} +(-2.48091 - 1.35833i) q^{8} +(-1.32211 - 0.763319i) q^{9} +(0.989568 + 3.00346i) q^{10} +5.59983i q^{11} +(-2.38772 + 3.52212i) q^{12} +(-0.144960 - 0.540998i) q^{13} +(-0.292192 + 0.207903i) q^{14} +(4.63916 - 1.05424i) q^{15} +(3.14047 + 2.47738i) q^{16} +(-1.48130 + 5.52829i) q^{17} +(1.66432 + 1.37524i) q^{18} +(-0.0837631 - 4.35809i) q^{19} +(-0.674047 - 4.42105i) q^{20} +(0.269751 + 0.467222i) q^{21} +(1.31621 - 7.80921i) q^{22} +(-7.59829 + 2.03596i) q^{23} +(4.15764 - 4.35053i) q^{24} +(-2.82442 + 4.12585i) q^{25} +(0.0749939 + 0.788518i) q^{26} +(-2.21657 + 2.21657i) q^{27} +(0.456341 - 0.221251i) q^{28} +(-4.45983 - 2.57488i) q^{29} +(-6.71730 + 0.379769i) q^{30} -2.50953i q^{31} +(-3.79723 - 4.19297i) q^{32} +(-11.5082 - 3.08360i) q^{33} +(3.36514 - 7.36127i) q^{34} +(-0.541660 - 0.167642i) q^{35} +(-1.99773 - 2.30902i) q^{36} +(-2.81317 - 2.81317i) q^{37} +(-0.907540 + 6.09724i) q^{38} +1.19163 q^{39} +(-0.0991599 + 6.32378i) q^{40} +(5.51038 + 9.54426i) q^{41} +(-0.266361 - 0.714966i) q^{42} +(0.103161 - 0.385001i) q^{43} +(-3.67104 + 10.5809i) q^{44} +(-0.130870 + 3.41116i) q^{45} +(11.0747 - 1.05329i) q^{46} +(0.811997 + 3.03041i) q^{47} +(-6.82059 + 5.08977i) q^{48} +6.93570i q^{49} +(4.90854 - 5.08982i) q^{50} +(-10.5455 - 6.08842i) q^{51} +(0.0807554 - 1.11725i) q^{52} +(-1.07892 - 4.02658i) q^{53} +(3.61211 - 2.57012i) q^{54} +(11.0761 - 5.84047i) q^{55} +(-0.688392 + 0.201283i) q^{56} +(9.00242 + 2.22769i) q^{57} +(5.61421 + 4.63905i) q^{58} +(-4.67284 - 8.09360i) q^{59} +(9.45684 + 1.04927i) q^{60} +(-5.16054 + 8.93832i) q^{61} +(-0.589854 + 3.49965i) q^{62} +(-0.373925 + 0.100193i) q^{63} +(4.30987 + 6.73981i) q^{64} +(-0.918867 + 0.850967i) q^{65} +(15.3239 + 7.00517i) q^{66} +(1.54566 + 5.76848i) q^{67} +(-6.42307 + 9.47465i) q^{68} -16.7363i q^{69} +(0.715966 + 0.361098i) q^{70} +(3.12358 - 1.80340i) q^{71} +(2.24319 + 3.68959i) q^{72} +(2.42726 + 0.650383i) q^{73} +(3.26186 + 4.58431i) q^{74} +(-6.92372 - 8.07639i) q^{75} +(2.69873 - 8.28956i) q^{76} +(1.00407 + 1.00407i) q^{77} +(-1.66177 - 0.280086i) q^{78} +(0.642802 + 1.11337i) q^{79} +(1.62466 - 8.79548i) q^{80} +(-5.62465 - 9.74217i) q^{81} +(-5.44113 - 14.6051i) q^{82} +(6.95875 + 6.95875i) q^{83} +(0.203403 + 1.05966i) q^{84} +(12.4795 - 2.83595i) q^{85} +(-0.234355 + 0.512653i) q^{86} +(7.74748 - 7.74748i) q^{87} +(7.60642 - 13.8927i) q^{88} +(-1.52733 - 0.881803i) q^{89} +(0.984281 - 4.72625i) q^{90} +(-0.122995 - 0.0710112i) q^{91} +(-15.6917 - 1.13421i) q^{92} +(5.15732 + 1.38190i) q^{93} +(-0.420080 - 4.41690i) q^{94} +(-8.53264 + 4.71105i) q^{95} +(10.7079 - 5.49476i) q^{96} +(-1.39017 + 5.18819i) q^{97} +(1.63021 - 9.67214i) q^{98} +(4.27445 - 7.40357i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39454 0.235046i −0.986092 0.166202i
\(3\) −0.550661 + 2.05509i −0.317924 + 1.18651i 0.603312 + 0.797505i \(0.293847\pi\)
−0.921236 + 0.389004i \(0.872819\pi\)
\(4\) 1.88951 + 0.655563i 0.944754 + 0.327781i
\(5\) −1.04297 1.97793i −0.466432 0.884557i
\(6\) 1.25096 2.73649i 0.510703 1.11717i
\(7\) 0.179304 0.179304i 0.0677706 0.0677706i −0.672409 0.740180i \(-0.734740\pi\)
0.740180 + 0.672409i \(0.234740\pi\)
\(8\) −2.48091 1.35833i −0.877136 0.480243i
\(9\) −1.32211 0.763319i −0.440702 0.254440i
\(10\) 0.989568 + 3.00346i 0.312929 + 0.949777i
\(11\) 5.59983i 1.68841i 0.536020 + 0.844206i \(0.319927\pi\)
−0.536020 + 0.844206i \(0.680073\pi\)
\(12\) −2.38772 + 3.52212i −0.689276 + 1.01675i
\(13\) −0.144960 0.540998i −0.0402047 0.150046i 0.942906 0.333060i \(-0.108081\pi\)
−0.983110 + 0.183014i \(0.941415\pi\)
\(14\) −0.292192 + 0.207903i −0.0780916 + 0.0555644i
\(15\) 4.63916 1.05424i 1.19782 0.272203i
\(16\) 3.14047 + 2.47738i 0.785119 + 0.619345i
\(17\) −1.48130 + 5.52829i −0.359268 + 1.34081i 0.515759 + 0.856733i \(0.327510\pi\)
−0.875027 + 0.484073i \(0.839157\pi\)
\(18\) 1.66432 + 1.37524i 0.392284 + 0.324147i
\(19\) −0.0837631 4.35809i −0.0192166 0.999815i
\(20\) −0.674047 4.42105i −0.150721 0.988576i
\(21\) 0.269751 + 0.467222i 0.0588645 + 0.101956i
\(22\) 1.31621 7.80921i 0.280618 1.66493i
\(23\) −7.59829 + 2.03596i −1.58435 + 0.424526i −0.940270 0.340429i \(-0.889428\pi\)
−0.644083 + 0.764955i \(0.722761\pi\)
\(24\) 4.15764 4.35053i 0.848675 0.888048i
\(25\) −2.82442 + 4.12585i −0.564883 + 0.825171i
\(26\) 0.0749939 + 0.788518i 0.0147075 + 0.154641i
\(27\) −2.21657 + 2.21657i −0.426580 + 0.426580i
\(28\) 0.456341 0.221251i 0.0862404 0.0418125i
\(29\) −4.45983 2.57488i −0.828169 0.478144i 0.0250562 0.999686i \(-0.492024\pi\)
−0.853225 + 0.521542i \(0.825357\pi\)
\(30\) −6.71730 + 0.379769i −1.22641 + 0.0693360i
\(31\) 2.50953i 0.450725i −0.974275 0.225363i \(-0.927643\pi\)
0.974275 0.225363i \(-0.0723567\pi\)
\(32\) −3.79723 4.19297i −0.671262 0.741220i
\(33\) −11.5082 3.08360i −2.00331 0.536787i
\(34\) 3.36514 7.36127i 0.577117 1.26245i
\(35\) −0.541660 0.167642i −0.0915573 0.0283366i
\(36\) −1.99773 2.30902i −0.332955 0.384837i
\(37\) −2.81317 2.81317i −0.462482 0.462482i 0.436986 0.899468i \(-0.356046\pi\)
−0.899468 + 0.436986i \(0.856046\pi\)
\(38\) −0.907540 + 6.09724i −0.147222 + 0.989103i
\(39\) 1.19163 0.190813
\(40\) −0.0991599 + 6.32378i −0.0156786 + 0.999877i
\(41\) 5.51038 + 9.54426i 0.860577 + 1.49056i 0.871373 + 0.490621i \(0.163230\pi\)
−0.0107964 + 0.999942i \(0.503437\pi\)
\(42\) −0.266361 0.714966i −0.0411004 0.110322i
\(43\) 0.103161 0.385001i 0.0157319 0.0587121i −0.957614 0.288056i \(-0.906991\pi\)
0.973346 + 0.229343i \(0.0736579\pi\)
\(44\) −3.67104 + 10.5809i −0.553430 + 1.59513i
\(45\) −0.130870 + 3.41116i −0.0195089 + 0.508505i
\(46\) 11.0747 1.05329i 1.63287 0.155298i
\(47\) 0.811997 + 3.03041i 0.118442 + 0.442031i 0.999521 0.0309370i \(-0.00984914\pi\)
−0.881079 + 0.472968i \(0.843182\pi\)
\(48\) −6.82059 + 5.08977i −0.984467 + 0.734645i
\(49\) 6.93570i 0.990814i
\(50\) 4.90854 5.08982i 0.694172 0.719809i
\(51\) −10.5455 6.08842i −1.47666 0.852550i
\(52\) 0.0807554 1.11725i 0.0111988 0.154935i
\(53\) −1.07892 4.02658i −0.148201 0.553094i −0.999592 0.0285622i \(-0.990907\pi\)
0.851391 0.524532i \(-0.175760\pi\)
\(54\) 3.61211 2.57012i 0.491546 0.349748i
\(55\) 11.0761 5.84047i 1.49350 0.787528i
\(56\) −0.688392 + 0.201283i −0.0919903 + 0.0268976i
\(57\) 9.00242 + 2.22769i 1.19240 + 0.295065i
\(58\) 5.61421 + 4.63905i 0.737182 + 0.609137i
\(59\) −4.67284 8.09360i −0.608352 1.05370i −0.991512 0.130015i \(-0.958497\pi\)
0.383160 0.923682i \(-0.374836\pi\)
\(60\) 9.45684 + 1.04927i 1.22087 + 0.135460i
\(61\) −5.16054 + 8.93832i −0.660739 + 1.14443i 0.319682 + 0.947525i \(0.396424\pi\)
−0.980422 + 0.196909i \(0.936910\pi\)
\(62\) −0.589854 + 3.49965i −0.0749116 + 0.444456i
\(63\) −0.373925 + 0.100193i −0.0471102 + 0.0126231i
\(64\) 4.30987 + 6.73981i 0.538734 + 0.842476i
\(65\) −0.918867 + 0.850967i −0.113971 + 0.105549i
\(66\) 15.3239 + 7.00517i 1.88624 + 0.862276i
\(67\) 1.54566 + 5.76848i 0.188832 + 0.704732i 0.993778 + 0.111383i \(0.0355279\pi\)
−0.804945 + 0.593349i \(0.797805\pi\)
\(68\) −6.42307 + 9.47465i −0.778911 + 1.14897i
\(69\) 16.7363i 2.01482i
\(70\) 0.715966 + 0.361098i 0.0855742 + 0.0431595i
\(71\) 3.12358 1.80340i 0.370700 0.214024i −0.303064 0.952970i \(-0.598010\pi\)
0.673764 + 0.738946i \(0.264676\pi\)
\(72\) 2.24319 + 3.68959i 0.264363 + 0.434822i
\(73\) 2.42726 + 0.650383i 0.284090 + 0.0761216i 0.398050 0.917364i \(-0.369687\pi\)
−0.113960 + 0.993485i \(0.536354\pi\)
\(74\) 3.26186 + 4.58431i 0.379184 + 0.532915i
\(75\) −6.92372 8.07639i −0.799483 0.932581i
\(76\) 2.69873 8.28956i 0.309566 0.950878i
\(77\) 1.00407 + 1.00407i 0.114425 + 0.114425i
\(78\) −1.66177 0.280086i −0.188159 0.0317135i
\(79\) 0.642802 + 1.11337i 0.0723208 + 0.125263i 0.899918 0.436059i \(-0.143626\pi\)
−0.827597 + 0.561322i \(0.810293\pi\)
\(80\) 1.62466 8.79548i 0.181642 0.983365i
\(81\) −5.62465 9.74217i −0.624961 1.08246i
\(82\) −5.44113 14.6051i −0.600873 1.61286i
\(83\) 6.95875 + 6.95875i 0.763822 + 0.763822i 0.977011 0.213189i \(-0.0683849\pi\)
−0.213189 + 0.977011i \(0.568385\pi\)
\(84\) 0.203403 + 1.05966i 0.0221930 + 0.115618i
\(85\) 12.4795 2.83595i 1.35359 0.307601i
\(86\) −0.234355 + 0.512653i −0.0252711 + 0.0552808i
\(87\) 7.74748 7.74748i 0.830617 0.830617i
\(88\) 7.60642 13.8927i 0.810847 1.48097i
\(89\) −1.52733 0.881803i −0.161896 0.0934710i 0.416863 0.908969i \(-0.363130\pi\)
−0.578759 + 0.815498i \(0.696463\pi\)
\(90\) 0.984281 4.72625i 0.103752 0.498190i
\(91\) −0.122995 0.0710112i −0.0128934 0.00744400i
\(92\) −15.6917 1.13421i −1.63598 0.118249i
\(93\) 5.15732 + 1.38190i 0.534789 + 0.143296i
\(94\) −0.420080 4.41690i −0.0433280 0.455569i
\(95\) −8.53264 + 4.71105i −0.875431 + 0.483344i
\(96\) 10.7079 5.49476i 1.09287 0.560807i
\(97\) −1.39017 + 5.18819i −0.141150 + 0.526781i 0.858746 + 0.512401i \(0.171244\pi\)
−0.999897 + 0.0143794i \(0.995423\pi\)
\(98\) 1.63021 9.67214i 0.164676 0.977034i
\(99\) 4.27445 7.40357i 0.429599 0.744087i
\(100\) −8.04151 + 5.94425i −0.804151 + 0.594425i
\(101\) 1.34321 2.32651i 0.133655 0.231497i −0.791428 0.611262i \(-0.790662\pi\)
0.925083 + 0.379766i \(0.123995\pi\)
\(102\) 13.2750 + 10.9692i 1.31443 + 1.08612i
\(103\) 10.8045 + 10.8045i 1.06460 + 1.06460i 0.997764 + 0.0668379i \(0.0212910\pi\)
0.0668379 + 0.997764i \(0.478709\pi\)
\(104\) −0.375222 + 1.53907i −0.0367935 + 0.150919i
\(105\) 0.642790 1.02085i 0.0627299 0.0996246i
\(106\) 0.558171 + 5.86884i 0.0542143 + 0.570032i
\(107\) 6.11743 6.11743i 0.591394 0.591394i −0.346614 0.938008i \(-0.612669\pi\)
0.938008 + 0.346614i \(0.112669\pi\)
\(108\) −5.64134 + 2.73513i −0.542838 + 0.263188i
\(109\) 1.35537 0.782521i 0.129821 0.0749519i −0.433683 0.901065i \(-0.642786\pi\)
0.563504 + 0.826113i \(0.309453\pi\)
\(110\) −16.8188 + 5.54141i −1.60361 + 0.528353i
\(111\) 7.33042 4.23222i 0.695773 0.401705i
\(112\) 1.00730 0.118895i 0.0951813 0.0112345i
\(113\) 12.4087 12.4087i 1.16732 1.16732i 0.184480 0.982836i \(-0.440940\pi\)
0.982836 0.184480i \(-0.0590600\pi\)
\(114\) −12.0307 5.22259i −1.12677 0.489140i
\(115\) 11.9518 + 12.9054i 1.11451 + 1.20344i
\(116\) −6.73888 7.78896i −0.625689 0.723186i
\(117\) −0.221301 + 0.825908i −0.0204593 + 0.0763552i
\(118\) 4.61412 + 12.3852i 0.424764 + 1.14015i
\(119\) 0.725641 + 1.25685i 0.0665194 + 0.115215i
\(120\) −12.9414 3.68604i −1.18138 0.336488i
\(121\) −20.3581 −1.85073
\(122\) 9.29751 11.2519i 0.841757 1.01870i
\(123\) −22.6487 + 6.06870i −2.04216 + 0.547196i
\(124\) 1.64516 4.74178i 0.147739 0.425824i
\(125\) 11.1064 + 1.28334i 0.993390 + 0.114786i
\(126\) 0.545005 0.0518340i 0.0485529 0.00461774i
\(127\) −1.75668 6.55602i −0.155880 0.581753i −0.999028 0.0440715i \(-0.985967\pi\)
0.843148 0.537681i \(-0.180700\pi\)
\(128\) −4.42614 10.4120i −0.391219 0.920298i
\(129\) 0.734407 + 0.424010i 0.0646609 + 0.0373320i
\(130\) 1.48142 0.970736i 0.129929 0.0851391i
\(131\) 7.69586 4.44321i 0.672391 0.388205i −0.124591 0.992208i \(-0.539762\pi\)
0.796982 + 0.604003i \(0.206429\pi\)
\(132\) −19.7233 13.3708i −1.71669 1.16378i
\(133\) −0.796443 0.766405i −0.0690604 0.0664557i
\(134\) −0.799634 8.40770i −0.0690779 0.726315i
\(135\) 6.69606 + 2.07240i 0.576305 + 0.178364i
\(136\) 11.1842 11.7031i 0.959040 1.00353i
\(137\) 10.3906 2.78414i 0.887725 0.237865i 0.213988 0.976836i \(-0.431355\pi\)
0.673737 + 0.738971i \(0.264688\pi\)
\(138\) −3.93380 + 23.3395i −0.334867 + 1.98679i
\(139\) −3.18820 + 5.52212i −0.270420 + 0.468381i −0.968969 0.247181i \(-0.920496\pi\)
0.698550 + 0.715562i \(0.253829\pi\)
\(140\) −0.913571 0.671852i −0.0772108 0.0567819i
\(141\) −6.67492 −0.562130
\(142\) −4.77985 + 1.78073i −0.401116 + 0.149436i
\(143\) 3.02950 0.811751i 0.253339 0.0678820i
\(144\) −2.26101 5.67255i −0.188418 0.472712i
\(145\) −0.441459 + 11.5068i −0.0366612 + 0.955584i
\(146\) −3.23206 1.47751i −0.267487 0.122279i
\(147\) −14.2535 3.81922i −1.17561 0.315004i
\(148\) −3.47129 7.15971i −0.285338 0.588524i
\(149\) −6.59989 + 3.81045i −0.540684 + 0.312164i −0.745356 0.666666i \(-0.767721\pi\)
0.204672 + 0.978831i \(0.434387\pi\)
\(150\) 7.75712 + 12.8903i 0.633366 + 1.05249i
\(151\) 20.5228i 1.67012i 0.550156 + 0.835062i \(0.314568\pi\)
−0.550156 + 0.835062i \(0.685432\pi\)
\(152\) −5.71193 + 10.9258i −0.463299 + 0.886202i
\(153\) 6.17828 6.17828i 0.499485 0.499485i
\(154\) −1.16422 1.63622i −0.0938155 0.131851i
\(155\) −4.96368 + 2.61737i −0.398692 + 0.210232i
\(156\) 2.25159 + 0.781186i 0.180271 + 0.0625449i
\(157\) 5.61377 20.9509i 0.448027 1.67206i −0.259790 0.965665i \(-0.583653\pi\)
0.707817 0.706396i \(-0.249680\pi\)
\(158\) −0.634724 1.70372i −0.0504959 0.135541i
\(159\) 8.86912 0.703367
\(160\) −4.33300 + 11.8838i −0.342554 + 0.939498i
\(161\) −0.997349 + 1.72746i −0.0786021 + 0.136143i
\(162\) 5.55396 + 14.9079i 0.436360 + 1.17128i
\(163\) 5.01069 + 5.01069i 0.392468 + 0.392468i 0.875566 0.483098i \(-0.160489\pi\)
−0.483098 + 0.875566i \(0.660489\pi\)
\(164\) 4.15504 + 21.6463i 0.324454 + 1.69030i
\(165\) 5.90355 + 25.9785i 0.459591 + 2.02242i
\(166\) −8.06866 11.3399i −0.626250 0.880148i
\(167\) 3.90837 + 14.5862i 0.302439 + 1.12872i 0.935128 + 0.354311i \(0.115285\pi\)
−0.632689 + 0.774406i \(0.718049\pi\)
\(168\) −0.0345859 1.52555i −0.00266836 0.117699i
\(169\) 10.9867 6.34315i 0.845128 0.487935i
\(170\) −18.0698 + 1.02159i −1.38589 + 0.0783527i
\(171\) −3.21587 + 5.82581i −0.245924 + 0.445510i
\(172\) 0.447315 0.659834i 0.0341075 0.0503119i
\(173\) 1.50332 + 0.402814i 0.114295 + 0.0306253i 0.315513 0.948921i \(-0.397823\pi\)
−0.201218 + 0.979546i \(0.564490\pi\)
\(174\) −12.6252 + 8.98319i −0.957115 + 0.681014i
\(175\) 0.233353 + 1.24621i 0.0176399 + 0.0942047i
\(176\) −13.8729 + 17.5861i −1.04571 + 1.32560i
\(177\) 19.2063 5.14630i 1.44363 0.386820i
\(178\) 1.92266 + 1.58871i 0.144110 + 0.119079i
\(179\) −4.79143 −0.358129 −0.179064 0.983837i \(-0.557307\pi\)
−0.179064 + 0.983837i \(0.557307\pi\)
\(180\) −2.48351 + 6.35961i −0.185110 + 0.474017i
\(181\) −11.8618 + 20.5452i −0.881677 + 1.52711i −0.0322020 + 0.999481i \(0.510252\pi\)
−0.849475 + 0.527628i \(0.823081\pi\)
\(182\) 0.154831 + 0.127938i 0.0114769 + 0.00948338i
\(183\) −15.5274 15.5274i −1.14782 1.14782i
\(184\) 21.6162 + 5.26997i 1.59357 + 0.388507i
\(185\) −2.63019 + 8.49830i −0.193375 + 0.624808i
\(186\) −6.86731 3.13933i −0.503535 0.230187i
\(187\) −30.9575 8.29502i −2.26383 0.606592i
\(188\) −0.452353 + 6.25830i −0.0329912 + 0.456434i
\(189\) 0.794882i 0.0578191i
\(190\) 13.0065 4.56421i 0.943588 0.331123i
\(191\) 3.73967i 0.270593i −0.990805 0.135296i \(-0.956801\pi\)
0.990805 0.135296i \(-0.0431987\pi\)
\(192\) −16.2242 + 5.14584i −1.17088 + 0.371369i
\(193\) −11.0229 2.95357i −0.793445 0.212603i −0.160741 0.986997i \(-0.551388\pi\)
−0.632704 + 0.774394i \(0.718055\pi\)
\(194\) 3.15811 6.90840i 0.226739 0.495994i
\(195\) −1.24283 2.35695i −0.0890011 0.168785i
\(196\) −4.54679 + 13.1051i −0.324771 + 0.936075i
\(197\) −7.05935 7.05935i −0.502958 0.502958i 0.409398 0.912356i \(-0.365739\pi\)
−0.912356 + 0.409398i \(0.865739\pi\)
\(198\) −7.70109 + 9.31991i −0.547293 + 0.662338i
\(199\) −0.388605 + 0.673084i −0.0275475 + 0.0477137i −0.879470 0.475953i \(-0.842103\pi\)
0.851923 + 0.523667i \(0.175436\pi\)
\(200\) 12.6114 6.39940i 0.891762 0.452506i
\(201\) −12.7059 −0.896205
\(202\) −2.42001 + 2.92871i −0.170271 + 0.206063i
\(203\) −1.26135 + 0.337978i −0.0885295 + 0.0237214i
\(204\) −15.9344 18.4173i −1.11563 1.28947i
\(205\) 13.1307 20.8535i 0.917088 1.45647i
\(206\) −12.5278 17.6069i −0.872856 1.22673i
\(207\) 11.5998 + 3.10817i 0.806245 + 0.216033i
\(208\) 0.885016 2.05811i 0.0613648 0.142704i
\(209\) 24.4046 0.469059i 1.68810 0.0324455i
\(210\) −1.13635 + 1.27253i −0.0784153 + 0.0878132i
\(211\) 10.0633 5.81004i 0.692786 0.399980i −0.111869 0.993723i \(-0.535684\pi\)
0.804655 + 0.593743i \(0.202350\pi\)
\(212\) 0.601052 8.31556i 0.0412805 0.571115i
\(213\) 1.98612 + 7.41230i 0.136087 + 0.507883i
\(214\) −9.96889 + 7.09315i −0.681460 + 0.484877i
\(215\) −0.869099 + 0.197501i −0.0592721 + 0.0134694i
\(216\) 8.50998 2.48829i 0.579031 0.169306i
\(217\) −0.449969 0.449969i −0.0305459 0.0305459i
\(218\) −2.07405 + 0.772687i −0.140472 + 0.0523330i
\(219\) −2.67320 + 4.63012i −0.180638 + 0.312874i
\(220\) 24.7571 3.77454i 1.66912 0.254480i
\(221\) 3.20552 0.215627
\(222\) −11.2174 + 4.17904i −0.752860 + 0.280479i
\(223\) 2.17034 8.09981i 0.145337 0.542404i −0.854404 0.519610i \(-0.826077\pi\)
0.999740 0.0227936i \(-0.00725605\pi\)
\(224\) −1.43268 0.0709579i −0.0957247 0.00474107i
\(225\) 6.88352 3.29889i 0.458902 0.219926i
\(226\) −20.2212 + 14.3879i −1.34509 + 0.957070i
\(227\) −2.19806 + 2.19806i −0.145890 + 0.145890i −0.776279 0.630389i \(-0.782895\pi\)
0.630389 + 0.776279i \(0.282895\pi\)
\(228\) 15.5497 + 10.1109i 1.02981 + 0.669610i
\(229\) 18.4622i 1.22002i −0.792394 0.610009i \(-0.791166\pi\)
0.792394 0.610009i \(-0.208834\pi\)
\(230\) −13.6339 20.8064i −0.898995 1.37194i
\(231\) −2.61636 + 1.51056i −0.172144 + 0.0993874i
\(232\) 7.56690 + 12.4460i 0.496792 + 0.817119i
\(233\) 18.5553 + 4.97189i 1.21560 + 0.325719i 0.808957 0.587867i \(-0.200032\pi\)
0.406644 + 0.913587i \(0.366699\pi\)
\(234\) 0.502741 1.09975i 0.0328652 0.0718929i
\(235\) 5.14706 4.76671i 0.335757 0.310946i
\(236\) −3.52350 18.3563i −0.229361 1.19489i
\(237\) −2.64204 + 0.707931i −0.171619 + 0.0459851i
\(238\) −0.716522 1.92329i −0.0464452 0.124668i
\(239\) −19.7075 −1.27477 −0.637387 0.770544i \(-0.719985\pi\)
−0.637387 + 0.770544i \(0.719985\pi\)
\(240\) 17.1809 + 8.18215i 1.10902 + 0.528156i
\(241\) 4.66849 8.08606i 0.300724 0.520869i −0.675576 0.737290i \(-0.736105\pi\)
0.976300 + 0.216421i \(0.0694385\pi\)
\(242\) 28.3902 + 4.78507i 1.82499 + 0.307596i
\(243\) 14.0347 3.76057i 0.900324 0.241241i
\(244\) −15.6105 + 13.5060i −0.999360 + 0.864630i
\(245\) 13.7183 7.23375i 0.876432 0.462147i
\(246\) 33.0110 3.13959i 2.10471 0.200173i
\(247\) −2.34558 + 0.677065i −0.149246 + 0.0430806i
\(248\) −3.40878 + 6.22593i −0.216458 + 0.395347i
\(249\) −18.1328 + 10.4690i −1.14912 + 0.663445i
\(250\) −15.1868 4.40020i −0.960496 0.278293i
\(251\) −14.0114 8.08950i −0.884393 0.510605i −0.0122888 0.999924i \(-0.503912\pi\)
−0.872104 + 0.489320i \(0.837245\pi\)
\(252\) −0.772217 0.0558162i −0.0486451 0.00351609i
\(253\) −11.4010 42.5491i −0.716775 2.67504i
\(254\) 0.908805 + 9.55556i 0.0570235 + 0.599569i
\(255\) −1.04385 + 27.2082i −0.0653684 + 1.70385i
\(256\) 3.72516 + 15.5603i 0.232822 + 0.972519i
\(257\) −22.3421 + 5.98655i −1.39366 + 0.373430i −0.876064 0.482194i \(-0.839840\pi\)
−0.517597 + 0.855624i \(0.673173\pi\)
\(258\) −0.924501 0.763920i −0.0575569 0.0475596i
\(259\) −1.00882 −0.0626853
\(260\) −2.29407 + 1.00553i −0.142272 + 0.0623605i
\(261\) 3.93091 + 6.80854i 0.243317 + 0.421438i
\(262\) −11.7766 + 4.38737i −0.727559 + 0.271053i
\(263\) 2.47953 9.25374i 0.152894 0.570610i −0.846382 0.532576i \(-0.821224\pi\)
0.999276 0.0380336i \(-0.0121094\pi\)
\(264\) 24.3622 + 23.2821i 1.49939 + 1.43291i
\(265\) −6.83902 + 6.33364i −0.420117 + 0.389073i
\(266\) 0.930535 + 1.25599i 0.0570547 + 0.0770094i
\(267\) 2.65323 2.65323i 0.162375 0.162375i
\(268\) −0.861067 + 11.9129i −0.0525980 + 0.727694i
\(269\) −11.7304 + 6.77253i −0.715213 + 0.412928i −0.812988 0.582280i \(-0.802161\pi\)
0.0977755 + 0.995209i \(0.468827\pi\)
\(270\) −8.85084 4.46394i −0.538645 0.271667i
\(271\) 18.2507 10.5371i 1.10865 0.640081i 0.170172 0.985414i \(-0.445568\pi\)
0.938480 + 0.345334i \(0.112234\pi\)
\(272\) −18.3477 + 13.6917i −1.11249 + 0.830181i
\(273\) 0.213663 0.213663i 0.0129315 0.0129315i
\(274\) −15.1445 + 1.44035i −0.914912 + 0.0870149i
\(275\) −23.1041 15.8162i −1.39323 0.953755i
\(276\) 10.9717 31.6234i 0.660420 1.90351i
\(277\) 11.9931 + 11.9931i 0.720595 + 0.720595i 0.968726 0.248131i \(-0.0798164\pi\)
−0.248131 + 0.968726i \(0.579816\pi\)
\(278\) 5.74404 6.95147i 0.344504 0.416922i
\(279\) −1.91557 + 3.31787i −0.114682 + 0.198636i
\(280\) 1.11610 + 1.15166i 0.0666997 + 0.0688248i
\(281\) 3.64094 6.30629i 0.217200 0.376202i −0.736751 0.676164i \(-0.763641\pi\)
0.953951 + 0.299963i \(0.0969743\pi\)
\(282\) 9.30847 + 1.56891i 0.554311 + 0.0934273i
\(283\) 3.41328 12.7385i 0.202899 0.757228i −0.787181 0.616722i \(-0.788460\pi\)
0.990080 0.140506i \(-0.0448730\pi\)
\(284\) 7.08426 1.35983i 0.420373 0.0806912i
\(285\) −4.98306 20.1296i −0.295171 1.19237i
\(286\) −4.41556 + 0.419953i −0.261098 + 0.0248323i
\(287\) 2.69936 + 0.723291i 0.159338 + 0.0426945i
\(288\) 1.81977 + 8.44206i 0.107231 + 0.497453i
\(289\) −13.6453 7.87811i −0.802664 0.463418i
\(290\) 3.32025 15.9429i 0.194972 0.936201i
\(291\) −9.89670 5.71386i −0.580155 0.334953i
\(292\) 4.15997 + 2.82013i 0.243444 + 0.165036i
\(293\) −10.5066 + 10.5066i −0.613800 + 0.613800i −0.943934 0.330134i \(-0.892906\pi\)
0.330134 + 0.943934i \(0.392906\pi\)
\(294\) 18.9795 + 8.67629i 1.10690 + 0.506012i
\(295\) −11.1349 + 17.6840i −0.648301 + 1.02960i
\(296\) 3.15801 + 10.8004i 0.183556 + 0.627763i
\(297\) −12.4124 12.4124i −0.720242 0.720242i
\(298\) 10.0995 3.76256i 0.585047 0.217959i
\(299\) 2.20290 + 3.81553i 0.127397 + 0.220658i
\(300\) −7.78785 19.7993i −0.449632 1.14311i
\(301\) −0.0505351 0.0875294i −0.00291279 0.00504511i
\(302\) 4.82380 28.6200i 0.277578 1.64689i
\(303\) 4.04155 + 4.04155i 0.232181 + 0.232181i
\(304\) 10.5336 13.8940i 0.604144 0.796875i
\(305\) 23.0617 + 0.884766i 1.32051 + 0.0506615i
\(306\) −10.0681 + 7.16371i −0.575553 + 0.409522i
\(307\) 5.74155 + 1.53844i 0.327687 + 0.0878036i 0.418912 0.908027i \(-0.362412\pi\)
−0.0912248 + 0.995830i \(0.529078\pi\)
\(308\) 1.23897 + 2.55543i 0.0705968 + 0.145609i
\(309\) −28.1539 + 16.2547i −1.60162 + 0.924697i
\(310\) 7.53727 2.48335i 0.428088 0.141045i
\(311\) 21.5628i 1.22271i 0.791356 + 0.611356i \(0.209376\pi\)
−0.791356 + 0.611356i \(0.790624\pi\)
\(312\) −2.95632 1.61862i −0.167369 0.0916365i
\(313\) 2.92297 + 10.9087i 0.165216 + 0.616595i 0.998013 + 0.0630154i \(0.0200717\pi\)
−0.832797 + 0.553579i \(0.813262\pi\)
\(314\) −12.7531 + 27.8974i −0.719696 + 1.57434i
\(315\) 0.588169 + 0.635100i 0.0331395 + 0.0357838i
\(316\) 0.484697 + 2.52511i 0.0272664 + 0.142048i
\(317\) 18.6975 5.00997i 1.05015 0.281388i 0.307838 0.951439i \(-0.400394\pi\)
0.742315 + 0.670051i \(0.233728\pi\)
\(318\) −12.3684 2.08465i −0.693585 0.116901i
\(319\) 14.4189 24.9743i 0.807303 1.39829i
\(320\) 8.83580 15.5541i 0.493936 0.869498i
\(321\) 9.20326 + 15.9405i 0.513676 + 0.889712i
\(322\) 1.79688 2.17460i 0.100136 0.121185i
\(323\) 24.2169 + 5.99258i 1.34746 + 0.333436i
\(324\) −4.24120 22.0952i −0.235622 1.22751i
\(325\) 2.64151 + 0.929920i 0.146524 + 0.0515827i
\(326\) −5.80989 8.16537i −0.321780 0.452238i
\(327\) 0.861807 + 3.21631i 0.0476581 + 0.177862i
\(328\) −0.706508 31.1634i −0.0390104 1.72071i
\(329\) 0.688960 + 0.397771i 0.0379836 + 0.0219298i
\(330\) −2.12664 37.6157i −0.117068 2.07068i
\(331\) 22.7693i 1.25151i −0.780018 0.625757i \(-0.784790\pi\)
0.780018 0.625757i \(-0.215210\pi\)
\(332\) 8.58671 + 17.7105i 0.471257 + 0.971991i
\(333\) 1.57196 + 5.86665i 0.0861431 + 0.321490i
\(334\) −2.02196 21.2598i −0.110637 1.16328i
\(335\) 9.79757 9.07357i 0.535298 0.495742i
\(336\) −0.310342 + 2.13558i −0.0169306 + 0.116505i
\(337\) −5.25835 + 19.6244i −0.286440 + 1.06901i 0.661340 + 0.750086i \(0.269988\pi\)
−0.947780 + 0.318924i \(0.896679\pi\)
\(338\) −16.8123 + 6.26344i −0.914470 + 0.340686i
\(339\) 18.6681 + 32.3341i 1.01391 + 1.75615i
\(340\) 25.4393 + 2.82257i 1.37964 + 0.153076i
\(341\) 14.0529 0.761009
\(342\) 5.85401 7.36847i 0.316548 0.398441i
\(343\) 2.49873 + 2.49873i 0.134919 + 0.134919i
\(344\) −0.778892 + 0.815028i −0.0419950 + 0.0439434i
\(345\) −33.1033 + 17.4555i −1.78222 + 0.939774i
\(346\) −2.00177 0.915090i −0.107616 0.0491955i
\(347\) −6.08217 1.62971i −0.326508 0.0874875i 0.0918418 0.995774i \(-0.470725\pi\)
−0.418350 + 0.908286i \(0.637391\pi\)
\(348\) 19.7179 9.55995i 1.05699 0.512467i
\(349\) 29.5993i 1.58441i 0.610252 + 0.792207i \(0.291068\pi\)
−0.610252 + 0.792207i \(0.708932\pi\)
\(350\) −0.0325049 1.79275i −0.00173746 0.0958263i
\(351\) 1.52048 + 0.877848i 0.0811571 + 0.0468561i
\(352\) 23.4799 21.2638i 1.25148 1.13337i
\(353\) 10.9706 10.9706i 0.583904 0.583904i −0.352070 0.935974i \(-0.614522\pi\)
0.935974 + 0.352070i \(0.114522\pi\)
\(354\) −27.9936 + 2.66240i −1.48784 + 0.141505i
\(355\) −6.82480 4.29732i −0.362223 0.228078i
\(356\) −2.30782 2.66743i −0.122314 0.141374i
\(357\) −2.98252 + 0.799164i −0.157852 + 0.0422963i
\(358\) 6.68187 + 1.12621i 0.353148 + 0.0595218i
\(359\) 13.3446 + 23.1134i 0.704298 + 1.21988i 0.966944 + 0.254988i \(0.0820716\pi\)
−0.262646 + 0.964892i \(0.584595\pi\)
\(360\) 4.95816 8.28502i 0.261318 0.436659i
\(361\) −18.9860 + 0.730095i −0.999261 + 0.0384261i
\(362\) 21.3708 25.8631i 1.12322 1.35933i
\(363\) 11.2104 41.8377i 0.588392 2.19591i
\(364\) −0.185848 0.214807i −0.00974107 0.0112590i
\(365\) −1.24516 5.47929i −0.0651745 0.286799i
\(366\) 18.0040 + 25.3032i 0.941082 + 1.32262i
\(367\) 1.49872 + 5.59331i 0.0782327 + 0.291968i 0.993947 0.109862i \(-0.0350408\pi\)
−0.915714 + 0.401830i \(0.868374\pi\)
\(368\) −28.9061 12.4300i −1.50683 0.647959i
\(369\) 16.8247i 0.875859i
\(370\) 5.66541 11.2330i 0.294530 0.583978i
\(371\) −0.915437 0.528528i −0.0475271 0.0274398i
\(372\) 8.83888 + 5.99206i 0.458274 + 0.310674i
\(373\) −20.0933 + 20.0933i −1.04039 + 1.04039i −0.0412448 + 0.999149i \(0.513132\pi\)
−0.999149 + 0.0412448i \(0.986868\pi\)
\(374\) 41.2218 + 18.8442i 2.13153 + 0.974410i
\(375\) −8.75327 + 22.1181i −0.452017 + 1.14217i
\(376\) 2.10181 8.62116i 0.108393 0.444602i
\(377\) −0.746510 + 2.78601i −0.0384472 + 0.143487i
\(378\) 0.186833 1.10850i 0.00960967 0.0570150i
\(379\) 8.14504 0.418383 0.209191 0.977875i \(-0.432917\pi\)
0.209191 + 0.977875i \(0.432917\pi\)
\(380\) −19.2109 + 3.30788i −0.985497 + 0.169691i
\(381\) 14.4406 0.739813
\(382\) −0.878993 + 5.21513i −0.0449732 + 0.266829i
\(383\) −4.64818 + 17.3472i −0.237511 + 0.886403i 0.739490 + 0.673168i \(0.235067\pi\)
−0.977001 + 0.213235i \(0.931600\pi\)
\(384\) 23.8349 3.36267i 1.21632 0.171600i
\(385\) 0.938764 3.03320i 0.0478438 0.154586i
\(386\) 14.6777 + 6.70977i 0.747074 + 0.341518i
\(387\) −0.430268 + 0.430268i −0.0218718 + 0.0218718i
\(388\) −6.02792 + 8.89177i −0.306021 + 0.451411i
\(389\) 7.88921 + 4.55484i 0.399999 + 0.230939i 0.686483 0.727145i \(-0.259153\pi\)
−0.286485 + 0.958085i \(0.592487\pi\)
\(390\) 1.17919 + 3.57900i 0.0597108 + 0.181230i
\(391\) 45.0214i 2.27683i
\(392\) 9.42098 17.2069i 0.475831 0.869078i
\(393\) 4.89340 + 18.2624i 0.246839 + 0.921217i
\(394\) 8.18531 + 11.5038i 0.412370 + 0.579555i
\(395\) 1.53173 2.43263i 0.0770699 0.122399i
\(396\) 12.9301 11.1869i 0.649763 0.562164i
\(397\) −3.39698 + 12.6777i −0.170489 + 0.636275i 0.826787 + 0.562516i \(0.190166\pi\)
−0.997276 + 0.0737596i \(0.976500\pi\)
\(398\) 0.700133 0.847306i 0.0350945 0.0424716i
\(399\) 2.01360 1.21474i 0.100806 0.0608129i
\(400\) −19.0913 + 5.95998i −0.954566 + 0.297999i
\(401\) −6.91824 11.9827i −0.345480 0.598390i 0.639960 0.768408i \(-0.278951\pi\)
−0.985441 + 0.170018i \(0.945617\pi\)
\(402\) 17.7189 + 2.98647i 0.883740 + 0.148951i
\(403\) −1.35765 + 0.363782i −0.0676295 + 0.0181213i
\(404\) 4.06319 3.51540i 0.202151 0.174898i
\(405\) −13.4030 + 21.2860i −0.666000 + 1.05771i
\(406\) 1.83845 0.174850i 0.0912408 0.00867768i
\(407\) 15.7532 15.7532i 0.780859 0.780859i
\(408\) 17.8923 + 29.4291i 0.885800 + 1.45696i
\(409\) −2.31239 1.33506i −0.114340 0.0660143i 0.441739 0.897143i \(-0.354362\pi\)
−0.556079 + 0.831129i \(0.687695\pi\)
\(410\) −23.2129 + 25.9949i −1.14640 + 1.28380i
\(411\) 22.8867i 1.12892i
\(412\) 13.3322 + 27.4983i 0.656830 + 1.35474i
\(413\) −2.28908 0.613356i −0.112638 0.0301813i
\(414\) −15.4459 7.06097i −0.759126 0.347028i
\(415\) 6.50614 21.0217i 0.319374 1.03192i
\(416\) −1.71794 + 2.66211i −0.0842291 + 0.130521i
\(417\) −9.59287 9.59287i −0.469765 0.469765i
\(418\) −34.1435 5.08206i −1.67001 0.248572i
\(419\) −12.9141 −0.630895 −0.315447 0.948943i \(-0.602155\pi\)
−0.315447 + 0.948943i \(0.602155\pi\)
\(420\) 1.88379 1.50751i 0.0919194 0.0735590i
\(421\) 6.76420 + 11.7159i 0.329667 + 0.571000i 0.982446 0.186549i \(-0.0597302\pi\)
−0.652779 + 0.757549i \(0.726397\pi\)
\(422\) −15.3993 + 5.73703i −0.749628 + 0.279274i
\(423\) 1.23963 4.62635i 0.0602727 0.224941i
\(424\) −2.79273 + 11.4551i −0.135627 + 0.556311i
\(425\) −18.6251 21.7258i −0.903450 1.05386i
\(426\) −1.02750 10.8036i −0.0497827 0.523437i
\(427\) 0.677371 + 2.52798i 0.0327803 + 0.122338i
\(428\) 15.5693 7.54856i 0.752569 0.364873i
\(429\) 6.67290i 0.322171i
\(430\) 1.25842 0.0711458i 0.0606863 0.00343096i
\(431\) 16.0745 + 9.28059i 0.774279 + 0.447030i 0.834399 0.551161i \(-0.185815\pi\)
−0.0601199 + 0.998191i \(0.519148\pi\)
\(432\) −12.4524 + 1.46979i −0.599116 + 0.0707155i
\(433\) −3.40560 12.7099i −0.163663 0.610798i −0.998207 0.0598571i \(-0.980936\pi\)
0.834544 0.550941i \(-0.185731\pi\)
\(434\) 0.521739 + 0.733265i 0.0250443 + 0.0351979i
\(435\) −23.4044 7.24356i −1.12215 0.347302i
\(436\) 3.07397 0.590051i 0.147216 0.0282583i
\(437\) 9.50934 + 32.9435i 0.454894 + 1.57590i
\(438\) 4.81618 5.82858i 0.230126 0.278500i
\(439\) 5.09605 + 8.82662i 0.243221 + 0.421272i 0.961630 0.274350i \(-0.0884625\pi\)
−0.718409 + 0.695621i \(0.755129\pi\)
\(440\) −35.4121 0.555278i −1.68820 0.0264719i
\(441\) 5.29415 9.16974i 0.252102 0.436654i
\(442\) −4.47024 0.753444i −0.212628 0.0358377i
\(443\) 14.7165 3.94329i 0.699204 0.187351i 0.108330 0.994115i \(-0.465450\pi\)
0.590874 + 0.806764i \(0.298783\pi\)
\(444\) 16.6254 3.19126i 0.789005 0.151450i
\(445\) −0.151184 + 3.94065i −0.00716679 + 0.186805i
\(446\) −4.93046 + 10.7854i −0.233464 + 0.510704i
\(447\) −4.19653 15.6617i −0.198489 0.740771i
\(448\) 1.98125 + 0.435698i 0.0936054 + 0.0205848i
\(449\) 35.8076i 1.68987i −0.534872 0.844933i \(-0.679640\pi\)
0.534872 0.844933i \(-0.320360\pi\)
\(450\) −10.3748 + 2.98251i −0.489071 + 0.140597i
\(451\) −53.4462 + 30.8572i −2.51668 + 1.45301i
\(452\) 31.5811 15.3117i 1.48545 0.720201i
\(453\) −42.1763 11.3011i −1.98162 0.530972i
\(454\) 3.58193 2.54865i 0.168108 0.119614i
\(455\) −0.0121748 + 0.317338i −0.000570761 + 0.0148771i
\(456\) −19.3083 17.7550i −0.904193 0.831453i
\(457\) −13.2437 13.2437i −0.619516 0.619516i 0.325891 0.945407i \(-0.394336\pi\)
−0.945407 + 0.325891i \(0.894336\pi\)
\(458\) −4.33947 + 25.7464i −0.202770 + 1.20305i
\(459\) −8.97045 15.5373i −0.418705 0.725218i
\(460\) 14.1227 + 32.2201i 0.658472 + 1.50227i
\(461\) 12.7608 + 22.1024i 0.594331 + 1.02941i 0.993641 + 0.112595i \(0.0359162\pi\)
−0.399310 + 0.916816i \(0.630750\pi\)
\(462\) 4.00368 1.49158i 0.186268 0.0693944i
\(463\) −4.31196 4.31196i −0.200394 0.200394i 0.599775 0.800169i \(-0.295257\pi\)
−0.800169 + 0.599775i \(0.795257\pi\)
\(464\) −7.62701 19.1350i −0.354075 0.888322i
\(465\) −2.64564 11.6421i −0.122689 0.539890i
\(466\) −24.7076 11.2949i −1.14456 0.523225i
\(467\) 18.1567 18.1567i 0.840193 0.840193i −0.148691 0.988884i \(-0.547506\pi\)
0.988884 + 0.148691i \(0.0475060\pi\)
\(468\) −0.959586 + 1.41548i −0.0443569 + 0.0654307i
\(469\) 1.31145 + 0.757169i 0.0605573 + 0.0349628i
\(470\) −8.29819 + 5.43760i −0.382767 + 0.250818i
\(471\) 39.9647 + 23.0736i 1.84148 + 1.06318i
\(472\) 0.599124 + 26.4268i 0.0275769 + 1.21639i
\(473\) 2.15594 + 0.577682i 0.0991302 + 0.0265618i
\(474\) 3.85083 0.366243i 0.176875 0.0168221i
\(475\) 18.2174 + 11.9635i 0.835874 + 0.548922i
\(476\) 0.547162 + 2.85053i 0.0250791 + 0.130654i
\(477\) −1.64712 + 6.14713i −0.0754164 + 0.281458i
\(478\) 27.4830 + 4.63216i 1.25704 + 0.211870i
\(479\) −6.42028 + 11.1203i −0.293350 + 0.508097i −0.974600 0.223954i \(-0.928104\pi\)
0.681250 + 0.732051i \(0.261437\pi\)
\(480\) −22.0363 15.4487i −1.00582 0.705132i
\(481\) −1.11412 + 1.92971i −0.0507996 + 0.0879874i
\(482\) −8.41101 + 10.1791i −0.383111 + 0.463643i
\(483\) −3.00089 3.00089i −0.136545 0.136545i
\(484\) −38.4667 13.3460i −1.74849 0.606636i
\(485\) 11.7118 2.66148i 0.531805 0.120851i
\(486\) −20.4559 + 1.94550i −0.927896 + 0.0882498i
\(487\) −4.86314 + 4.86314i −0.220370 + 0.220370i −0.808654 0.588284i \(-0.799804\pi\)
0.588284 + 0.808654i \(0.299804\pi\)
\(488\) 24.9441 15.1655i 1.12916 0.686509i
\(489\) −13.0566 + 7.53825i −0.590441 + 0.340891i
\(490\) −20.8311 + 6.86335i −0.941052 + 0.310054i
\(491\) −17.0994 + 9.87232i −0.771684 + 0.445532i −0.833475 0.552557i \(-0.813652\pi\)
0.0617913 + 0.998089i \(0.480319\pi\)
\(492\) −46.7733 3.38080i −2.10870 0.152418i
\(493\) 20.8410 20.8410i 0.938633 0.938633i
\(494\) 3.43015 0.392879i 0.154330 0.0176765i
\(495\) −19.1019 0.732848i −0.858566 0.0329391i
\(496\) 6.21707 7.88112i 0.279155 0.353873i
\(497\) 0.236713 0.883426i 0.0106180 0.0396271i
\(498\) 27.7477 10.3374i 1.24340 0.463231i
\(499\) 8.76409 + 15.1799i 0.392335 + 0.679544i 0.992757 0.120139i \(-0.0383342\pi\)
−0.600422 + 0.799683i \(0.705001\pi\)
\(500\) 20.1444 + 9.70586i 0.900884 + 0.434059i
\(501\) −32.1283 −1.43539
\(502\) 17.6381 + 14.5745i 0.787229 + 0.650491i
\(503\) −26.9613 + 7.22425i −1.20214 + 0.322113i −0.803675 0.595069i \(-0.797125\pi\)
−0.398469 + 0.917182i \(0.630458\pi\)
\(504\) 1.06377 + 0.259345i 0.0473842 + 0.0115521i
\(505\) −6.00262 0.230292i −0.267113 0.0102478i
\(506\) 5.89822 + 62.0164i 0.262208 + 2.75696i
\(507\) 6.98585 + 26.0716i 0.310253 + 1.15788i
\(508\) 0.978624 13.5393i 0.0434194 0.600708i
\(509\) −19.4123 11.2077i −0.860435 0.496773i 0.00372273 0.999993i \(-0.498815\pi\)
−0.864158 + 0.503221i \(0.832148\pi\)
\(510\) 7.85087 37.6977i 0.347642 1.66928i
\(511\) 0.551835 0.318602i 0.0244117 0.0140941i
\(512\) −1.53752 22.5751i −0.0679492 0.997689i
\(513\) 9.84571 + 9.47437i 0.434699 + 0.418304i
\(514\) 32.5641 3.09709i 1.43634 0.136607i
\(515\) 10.1018 32.6394i 0.445137 1.43827i
\(516\) 1.10970 + 1.28262i 0.0488519 + 0.0564642i
\(517\) −16.9698 + 4.54704i −0.746331 + 0.199979i
\(518\) 1.40685 + 0.237120i 0.0618134 + 0.0104184i
\(519\) −1.65564 + 2.86765i −0.0726745 + 0.125876i
\(520\) 3.43553 0.863050i 0.150658 0.0378472i
\(521\) 1.15836 0.0507486 0.0253743 0.999678i \(-0.491922\pi\)
0.0253743 + 0.999678i \(0.491922\pi\)
\(522\) −3.88151 10.4188i −0.169889 0.456017i
\(523\) −12.2076 + 3.27102i −0.533802 + 0.143032i −0.515644 0.856803i \(-0.672447\pi\)
−0.0181588 + 0.999835i \(0.505780\pi\)
\(524\) 17.4542 3.35035i 0.762490 0.146361i
\(525\) −2.68958 0.206677i −0.117383 0.00902012i
\(526\) −5.63287 + 12.3219i −0.245605 + 0.537262i
\(527\) 13.8734 + 3.71737i 0.604335 + 0.161931i
\(528\) −28.5018 38.1941i −1.24038 1.66219i
\(529\) 33.6703 19.4396i 1.46393 0.845199i
\(530\) 11.0260 7.22507i 0.478939 0.313837i
\(531\) 14.2675i 0.619156i
\(532\) −1.00246 1.97025i −0.0434621 0.0854210i
\(533\) 4.36464 4.36464i 0.189054 0.189054i
\(534\) −4.32367 + 3.07641i −0.187104 + 0.133129i
\(535\) −18.4801 5.71953i −0.798966 0.247277i
\(536\) 4.00086 16.4106i 0.172811 0.708831i
\(537\) 2.63845 9.84684i 0.113858 0.424923i
\(538\) 17.9504 6.68742i 0.773895 0.288315i
\(539\) −38.8387 −1.67290
\(540\) 11.2937 + 8.30551i 0.486002 + 0.357412i
\(541\) −11.4935 + 19.9073i −0.494143 + 0.855881i −0.999977 0.00674993i \(-0.997851\pi\)
0.505834 + 0.862631i \(0.331185\pi\)
\(542\) −27.9281 + 10.4046i −1.19962 + 0.446918i
\(543\) −35.6904 35.6904i −1.53162 1.53162i
\(544\) 28.8048 14.7811i 1.23500 0.633736i
\(545\) −2.96138 1.86467i −0.126852 0.0798738i
\(546\) −0.348184 + 0.247742i −0.0149009 + 0.0106024i
\(547\) 0.0183718 + 0.0685645i 0.000785522 + 0.00293161i 0.966317 0.257353i \(-0.0828503\pi\)
−0.965532 + 0.260285i \(0.916184\pi\)
\(548\) 21.4582 + 1.55101i 0.916649 + 0.0662558i
\(549\) 13.6456 7.87828i 0.582379 0.336237i
\(550\) 28.5021 + 27.4870i 1.21533 + 1.17205i
\(551\) −10.8480 + 19.6520i −0.462141 + 0.837205i
\(552\) −22.7335 + 41.5214i −0.967601 + 1.76727i
\(553\) 0.314888 + 0.0843739i 0.0133904 + 0.00358794i
\(554\) −13.9060 19.5438i −0.590808 0.830338i
\(555\) −16.0165 10.0850i −0.679861 0.428083i
\(556\) −9.64423 + 8.34403i −0.409006 + 0.353866i
\(557\) 11.3141 3.03159i 0.479392 0.128453i −0.0110276 0.999939i \(-0.503510\pi\)
0.490419 + 0.871487i \(0.336844\pi\)
\(558\) 3.45120 4.17667i 0.146101 0.176812i
\(559\) −0.223239 −0.00944200
\(560\) −1.28576 1.86837i −0.0543332 0.0789532i
\(561\) 34.0941 59.0527i 1.43945 2.49321i
\(562\) −6.55971 + 7.93861i −0.276705 + 0.334870i
\(563\) 25.0452 + 25.0452i 1.05553 + 1.05553i 0.998365 + 0.0571664i \(0.0182066\pi\)
0.0571664 + 0.998365i \(0.481793\pi\)
\(564\) −12.6123 4.37583i −0.531074 0.184256i
\(565\) −37.4856 11.6016i −1.57703 0.488085i
\(566\) −7.75411 + 16.9622i −0.325930 + 0.712974i
\(567\) −2.75533 0.738289i −0.115713 0.0310052i
\(568\) −10.1989 + 0.231221i −0.427938 + 0.00970182i
\(569\) 36.7555i 1.54087i 0.637519 + 0.770434i \(0.279961\pi\)
−0.637519 + 0.770434i \(0.720039\pi\)
\(570\) 2.21773 + 29.2428i 0.0928905 + 1.22485i
\(571\) 26.5707i 1.11195i −0.831199 0.555975i \(-0.812345\pi\)
0.831199 0.555975i \(-0.187655\pi\)
\(572\) 6.25641 + 0.452216i 0.261594 + 0.0189081i
\(573\) 7.68537 + 2.05929i 0.321061 + 0.0860280i
\(574\) −3.59437 1.64313i −0.150026 0.0685830i
\(575\) 13.0607 37.0998i 0.544668 1.54717i
\(576\) −0.553484 12.2006i −0.0230618 0.508356i
\(577\) 23.0746 + 23.0746i 0.960609 + 0.960609i 0.999253 0.0386438i \(-0.0123038\pi\)
−0.0386438 + 0.999253i \(0.512304\pi\)
\(578\) 17.1772 + 14.1936i 0.714479 + 0.590377i
\(579\) 12.1397 21.0266i 0.504510 0.873838i
\(580\) −8.37755 + 21.4527i −0.347859 + 0.890775i
\(581\) 2.49546 0.103529
\(582\) 12.4584 + 10.2944i 0.516416 + 0.426717i
\(583\) 22.5482 6.04176i 0.933850 0.250224i
\(584\) −5.13840 4.91058i −0.212628 0.203201i
\(585\) 1.86440 0.423681i 0.0770835 0.0175171i
\(586\) 17.1214 12.1823i 0.707278 0.503248i
\(587\) −25.6514 6.87328i −1.05875 0.283691i −0.312886 0.949791i \(-0.601296\pi\)
−0.745863 + 0.666100i \(0.767962\pi\)
\(588\) −24.4284 16.5605i −1.00741 0.682944i
\(589\) −10.9368 + 0.210206i −0.450642 + 0.00866139i
\(590\) 19.6847 22.0439i 0.810406 0.907531i
\(591\) 18.3949 10.6203i 0.756666 0.436862i
\(592\) −1.86539 15.8040i −0.0766670 0.649539i
\(593\) 10.9500 + 40.8659i 0.449662 + 1.67816i 0.703325 + 0.710868i \(0.251698\pi\)
−0.253664 + 0.967292i \(0.581636\pi\)
\(594\) 14.3922 + 20.2272i 0.590519 + 0.829931i
\(595\) 1.72913 2.74613i 0.0708875 0.112580i
\(596\) −14.9685 + 2.87323i −0.613135 + 0.117692i
\(597\) −1.16926 1.16926i −0.0478547 0.0478547i
\(598\) −2.17521 5.83871i −0.0889511 0.238762i
\(599\) 22.4876 38.9497i 0.918820 1.59144i 0.117611 0.993060i \(-0.462476\pi\)
0.801210 0.598384i \(-0.204190\pi\)
\(600\) 6.20675 + 29.4415i 0.253390 + 1.20195i
\(601\) 30.4634 1.24263 0.621314 0.783562i \(-0.286599\pi\)
0.621314 + 0.783562i \(0.286599\pi\)
\(602\) 0.0499000 + 0.133942i 0.00203377 + 0.00545905i
\(603\) 2.35966 8.80638i 0.0960929 0.358623i
\(604\) −13.4540 + 38.7780i −0.547435 + 1.57785i
\(605\) 21.2329 + 40.2668i 0.863240 + 1.63708i
\(606\) −4.68617 6.58607i −0.190363 0.267541i
\(607\) −27.6665 + 27.6665i −1.12295 + 1.12295i −0.131655 + 0.991296i \(0.542029\pi\)
−0.991296 + 0.131655i \(0.957971\pi\)
\(608\) −17.9553 + 16.8999i −0.728184 + 0.685382i
\(609\) 2.77831i 0.112583i
\(610\) −31.9526 6.65439i −1.29372 0.269428i
\(611\) 1.52174 0.878578i 0.0615631 0.0355435i
\(612\) 15.7242 7.62366i 0.635612 0.308168i
\(613\) −3.90824 1.04721i −0.157853 0.0422965i 0.179027 0.983844i \(-0.442705\pi\)
−0.336880 + 0.941548i \(0.609372\pi\)
\(614\) −7.64524 3.49495i −0.308537 0.141045i
\(615\) 35.6254 + 38.4680i 1.43656 + 1.55118i
\(616\) −1.12715 3.85488i −0.0454143 0.155317i
\(617\) 26.9611 7.22419i 1.08541 0.290835i 0.328600 0.944469i \(-0.393423\pi\)
0.756811 + 0.653634i \(0.226756\pi\)
\(618\) 43.0825 16.0504i 1.73303 0.645643i
\(619\) −38.6494 −1.55345 −0.776725 0.629840i \(-0.783120\pi\)
−0.776725 + 0.629840i \(0.783120\pi\)
\(620\) −11.0948 + 1.69154i −0.445576 + 0.0679339i
\(621\) 12.3293 21.3550i 0.494759 0.856948i
\(622\) 5.06823 30.0702i 0.203218 1.20571i
\(623\) −0.431967 + 0.115745i −0.0173064 + 0.00463723i
\(624\) 3.74227 + 2.95211i 0.149811 + 0.118179i
\(625\) −9.04535 23.3063i −0.361814 0.932250i
\(626\) −1.51218 15.8997i −0.0604387 0.635478i
\(627\) −12.4747 + 50.4120i −0.498191 + 2.01326i
\(628\) 24.3419 35.9066i 0.971346 1.43283i
\(629\) 19.7191 11.3849i 0.786254 0.453944i
\(630\) −0.670950 1.02392i −0.0267313 0.0407940i
\(631\) −7.24741 4.18430i −0.288515 0.166574i 0.348757 0.937213i \(-0.386604\pi\)
−0.637272 + 0.770639i \(0.719937\pi\)
\(632\) −0.0824162 3.63530i −0.00327834 0.144605i
\(633\) 6.39873 + 23.8804i 0.254327 + 0.949160i
\(634\) −27.2520 + 2.59187i −1.08232 + 0.102936i
\(635\) −11.1352 + 10.3123i −0.441886 + 0.409233i
\(636\) 16.7583 + 5.81427i 0.664509 + 0.230551i
\(637\) 3.75220 1.00540i 0.148668 0.0398354i
\(638\) −25.9779 + 31.4386i −1.02847 + 1.24467i
\(639\) −5.50627 −0.217825
\(640\) −15.9778 + 19.6140i −0.631579 + 0.775312i
\(641\) −14.2616 24.7019i −0.563301 0.975665i −0.997206 0.0747066i \(-0.976198\pi\)
0.433905 0.900959i \(-0.357135\pi\)
\(642\) −9.08760 24.3929i −0.358659 0.962712i
\(643\) −10.1529 + 37.8910i −0.400390 + 1.49427i 0.412014 + 0.911178i \(0.364826\pi\)
−0.812403 + 0.583096i \(0.801841\pi\)
\(644\) −3.01696 + 2.61022i −0.118885 + 0.102857i
\(645\) 0.0726958 1.89484i 0.00286239 0.0746091i
\(646\) −32.3630 14.0490i −1.27330 0.552750i
\(647\) 14.9378 14.9378i 0.587267 0.587267i −0.349623 0.936890i \(-0.613690\pi\)
0.936890 + 0.349623i \(0.113690\pi\)
\(648\) 0.721159 + 31.8096i 0.0283298 + 1.24960i
\(649\) 45.3228 26.1671i 1.77907 1.02715i
\(650\) −3.46513 1.91769i −0.135913 0.0752179i
\(651\) 1.17251 0.676948i 0.0459543 0.0265317i
\(652\) 6.18291 + 12.7526i 0.242142 + 0.499429i
\(653\) 10.7349 10.7349i 0.420088 0.420088i −0.465146 0.885234i \(-0.653998\pi\)
0.885234 + 0.465146i \(0.153998\pi\)
\(654\) −0.445849 4.68785i −0.0174341 0.183309i
\(655\) −16.8149 10.5877i −0.657014 0.413697i
\(656\) −6.33956 + 43.6248i −0.247518 + 1.70326i
\(657\) −2.71265 2.71265i −0.105831 0.105831i
\(658\) −0.867291 0.716646i −0.0338105 0.0279378i
\(659\) 1.80972 3.13452i 0.0704965 0.122104i −0.828622 0.559808i \(-0.810875\pi\)
0.899119 + 0.437704i \(0.144208\pi\)
\(660\) −5.87572 + 52.9567i −0.228712 + 2.06133i
\(661\) −1.34342 + 2.32687i −0.0522529 + 0.0905046i −0.890969 0.454065i \(-0.849974\pi\)
0.838716 + 0.544569i \(0.183307\pi\)
\(662\) −5.35183 + 31.7528i −0.208005 + 1.23411i
\(663\) −1.76516 + 6.58765i −0.0685530 + 0.255843i
\(664\) −7.81177 26.7164i −0.303156 1.03680i
\(665\) −0.685227 + 2.37465i −0.0265720 + 0.0920849i
\(666\) −0.813243 8.55079i −0.0315125 0.331336i
\(667\) 39.1294 + 10.4847i 1.51510 + 0.405969i
\(668\) −2.17730 + 30.1230i −0.0842424 + 1.16549i
\(669\) 15.4508 + 8.92050i 0.597361 + 0.344886i
\(670\) −15.7958 + 10.3506i −0.610247 + 0.399879i
\(671\) −50.0530 28.8981i −1.93228 1.11560i
\(672\) 0.934744 2.90521i 0.0360585 0.112071i
\(673\) −27.5371 + 27.5371i −1.06148 + 1.06148i −0.0634951 + 0.997982i \(0.520225\pi\)
−0.997982 + 0.0634951i \(0.979775\pi\)
\(674\) 11.9456 26.1312i 0.460128 1.00653i
\(675\) −2.88474 15.4058i −0.111034 0.592969i
\(676\) 24.9177 4.78298i 0.958374 0.183961i
\(677\) 4.46306 + 4.46306i 0.171529 + 0.171529i 0.787651 0.616122i \(-0.211297\pi\)
−0.616122 + 0.787651i \(0.711297\pi\)
\(678\) −18.4335 49.4792i −0.707935 1.90024i
\(679\) 0.681000 + 1.17953i 0.0261344 + 0.0452661i
\(680\) −34.8128 9.91560i −1.33501 0.380246i
\(681\) −3.30683 5.72760i −0.126718 0.219482i
\(682\) −19.5974 3.30308i −0.750425 0.126482i
\(683\) 3.50300 + 3.50300i 0.134039 + 0.134039i 0.770943 0.636904i \(-0.219785\pi\)
−0.636904 + 0.770943i \(0.719785\pi\)
\(684\) −9.89560 + 8.89969i −0.378368 + 0.340288i
\(685\) −16.3439 17.6480i −0.624468 0.674296i
\(686\) −2.89727 4.07190i −0.110618 0.155466i
\(687\) 37.9416 + 10.1664i 1.44756 + 0.387873i
\(688\) 1.27777 0.953517i 0.0487145 0.0363525i
\(689\) −2.02197 + 1.16739i −0.0770311 + 0.0444739i
\(690\) 50.2668 16.5617i 1.91363 0.630494i
\(691\) 27.7608i 1.05607i 0.849222 + 0.528036i \(0.177071\pi\)
−0.849222 + 0.528036i \(0.822929\pi\)
\(692\) 2.57647 + 1.74664i 0.0979425 + 0.0663973i
\(693\) −0.561063 2.09392i −0.0213130 0.0795413i
\(694\) 8.09879 + 3.70229i 0.307426 + 0.140537i
\(695\) 14.2476 + 0.546612i 0.540442 + 0.0207342i
\(696\) −29.7445 + 8.69718i −1.12746 + 0.329666i
\(697\) −60.9259 + 16.3251i −2.30773 + 0.618356i
\(698\) 6.95719 41.2775i 0.263333 1.56238i
\(699\) −20.4354 + 35.3952i −0.772938 + 1.33877i
\(700\) −0.376047 + 2.50770i −0.0142133 + 0.0947823i
\(701\) −11.8154 20.4650i −0.446263 0.772951i 0.551876 0.833926i \(-0.313912\pi\)
−0.998139 + 0.0609755i \(0.980579\pi\)
\(702\) −1.91404 1.58158i −0.0722407 0.0596929i
\(703\) −12.0244 + 12.4957i −0.453509 + 0.471284i
\(704\) −37.7418 + 24.1345i −1.42245 + 0.909604i
\(705\) 6.96176 + 13.2025i 0.262195 + 0.497236i
\(706\) −17.8775 + 12.7203i −0.672829 + 0.478736i
\(707\) −0.176310 0.657997i −0.00663081 0.0247465i
\(708\) 39.6641 + 2.86694i 1.49067 + 0.107746i
\(709\) 23.5118 + 13.5746i 0.883006 + 0.509804i 0.871648 0.490132i \(-0.163051\pi\)
0.0113574 + 0.999936i \(0.496385\pi\)
\(710\) 8.50742 + 7.59694i 0.319278 + 0.285108i
\(711\) 1.96265i 0.0736052i
\(712\) 2.59139 + 4.26230i 0.0971164 + 0.159736i
\(713\) 5.10930 + 19.0682i 0.191345 + 0.714108i
\(714\) 4.34710 0.413441i 0.162686 0.0154727i
\(715\) −4.76527 5.14550i −0.178211 0.192431i
\(716\) −9.05345 3.14109i −0.338343 0.117388i
\(717\) 10.8522 40.5008i 0.405281 1.51253i
\(718\) −13.1769 35.3693i −0.491756 1.31997i
\(719\) 11.4195 + 19.7792i 0.425876 + 0.737638i 0.996502 0.0835717i \(-0.0266328\pi\)
−0.570626 + 0.821210i \(0.693299\pi\)
\(720\) −8.86173 + 10.3884i −0.330257 + 0.387154i
\(721\) 3.87459 0.144297
\(722\) 26.6484 + 3.44442i 0.991750 + 0.128188i
\(723\) 14.0469 + 14.0469i 0.522408 + 0.522408i
\(724\) −35.8815 + 31.0441i −1.33353 + 1.15374i
\(725\) 23.2200 11.1281i 0.862369 0.413286i
\(726\) −25.4671 + 55.7096i −0.945174 + 2.06758i
\(727\) 14.6862 + 3.93515i 0.544681 + 0.145947i 0.520659 0.853765i \(-0.325686\pi\)
0.0240216 + 0.999711i \(0.492353\pi\)
\(728\) 0.208683 + 0.343241i 0.00773432 + 0.0127214i
\(729\) 2.83454i 0.104983i
\(730\) 0.448544 + 7.93378i 0.0166013 + 0.293642i
\(731\) 1.97558 + 1.14060i 0.0730696 + 0.0421868i
\(732\) −19.1599 39.5183i −0.708171 1.46064i
\(733\) 8.43836 8.43836i 0.311678 0.311678i −0.533881 0.845559i \(-0.679267\pi\)
0.845559 + 0.533881i \(0.179267\pi\)
\(734\) −0.775353 8.15239i −0.0286188 0.300910i
\(735\) 7.31188 + 32.1758i 0.269703 + 1.18682i
\(736\) 37.3892 + 24.1284i 1.37818 + 0.889386i
\(737\) −32.3025 + 8.65542i −1.18988 + 0.318827i
\(738\) −3.95457 + 23.4628i −0.145570 + 0.863678i
\(739\) −3.74847 6.49255i −0.137890 0.238832i 0.788808 0.614640i \(-0.210699\pi\)
−0.926698 + 0.375808i \(0.877365\pi\)
\(740\) −10.5409 + 14.3333i −0.387493 + 0.526904i
\(741\) −0.0998143 5.19322i −0.00366677 0.190778i
\(742\) 1.15239 + 0.952225i 0.0423056 + 0.0349573i
\(743\) −3.21748 + 12.0078i −0.118038 + 0.440523i −0.999496 0.0317387i \(-0.989896\pi\)
0.881458 + 0.472262i \(0.156562\pi\)
\(744\) −10.9178 10.4337i −0.400266 0.382519i
\(745\) 14.4203 + 9.07993i 0.528319 + 0.332663i
\(746\) 32.7439 23.2982i 1.19884 0.853008i
\(747\) −3.88847 14.5120i −0.142272 0.530965i
\(748\) −53.0564 35.9681i −1.93993 1.31512i
\(749\) 2.19376i 0.0801582i
\(750\) 17.4056 28.7872i 0.635562 1.05116i
\(751\) −9.89143 5.71082i −0.360943 0.208391i 0.308551 0.951208i \(-0.400156\pi\)
−0.669495 + 0.742817i \(0.733489\pi\)
\(752\) −4.95744 + 11.5286i −0.180779 + 0.420404i
\(753\) 24.3402 24.3402i 0.887007 0.887007i
\(754\) 1.69588 3.70976i 0.0617604 0.135101i
\(755\) 40.5927 21.4047i 1.47732 0.778998i
\(756\) −0.521095 + 1.50193i −0.0189520 + 0.0546248i
\(757\) 5.05076 18.8497i 0.183573 0.685104i −0.811358 0.584549i \(-0.801271\pi\)
0.994931 0.100555i \(-0.0320619\pi\)
\(758\) −11.3586 1.91446i −0.412564 0.0695362i
\(759\) 93.7205 3.40184
\(760\) 27.5679 0.0975511i 0.999994 0.00353855i
\(761\) −10.6337 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(762\) −20.1380 3.39419i −0.729523 0.122959i
\(763\) 0.102713 0.383332i 0.00371848 0.0138775i
\(764\) 2.45159 7.06613i 0.0886954 0.255644i
\(765\) −18.6640 5.77643i −0.674798 0.208847i
\(766\) 10.5595 23.0990i 0.381530 0.834600i
\(767\) −3.70125 + 3.70125i −0.133644 + 0.133644i
\(768\) −34.0292 0.912902i −1.22792 0.0329415i