Properties

Label 380.2.v.c.7.13
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.13
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04438 - 0.953560i) q^{2} +(-0.712111 + 2.65764i) q^{3} +(0.181448 + 1.99175i) q^{4} +(1.75700 - 1.38309i) q^{5} +(3.27793 - 2.09653i) q^{6} +(2.28576 - 2.28576i) q^{7} +(1.70975 - 2.25316i) q^{8} +(-3.95785 - 2.28507i) q^{9} +O(q^{10})\) \(q+(-1.04438 - 0.953560i) q^{2} +(-0.712111 + 2.65764i) q^{3} +(0.181448 + 1.99175i) q^{4} +(1.75700 - 1.38309i) q^{5} +(3.27793 - 2.09653i) q^{6} +(2.28576 - 2.28576i) q^{7} +(1.70975 - 2.25316i) q^{8} +(-3.95785 - 2.28507i) q^{9} +(-3.15383 - 0.230937i) q^{10} -5.10396i q^{11} +(-5.42256 - 0.936127i) q^{12} +(0.779486 + 2.90908i) q^{13} +(-4.56680 + 0.207587i) q^{14} +(2.42457 + 5.65439i) q^{15} +(-3.93415 + 0.722798i) q^{16} +(-0.0673490 + 0.251350i) q^{17} +(1.95454 + 6.16052i) q^{18} +(1.58489 - 4.06056i) q^{19} +(3.07358 + 3.24855i) q^{20} +(4.44699 + 7.70242i) q^{21} +(-4.86693 + 5.33046i) q^{22} +(7.18875 - 1.92622i) q^{23} +(4.77055 + 6.14841i) q^{24} +(1.17411 - 4.86019i) q^{25} +(1.95991 - 3.78147i) q^{26} +(3.05473 - 3.05473i) q^{27} +(4.96740 + 4.13791i) q^{28} +(-3.30285 - 1.90690i) q^{29} +(2.85963 - 8.21729i) q^{30} +3.55626i q^{31} +(4.79797 + 2.99658i) q^{32} +(13.5645 + 3.63458i) q^{33} +(0.310015 - 0.198283i) q^{34} +(0.854668 - 7.17749i) q^{35} +(3.83314 - 8.29767i) q^{36} +(1.75278 + 1.75278i) q^{37} +(-5.52720 + 2.72947i) q^{38} -8.28636 q^{39} +(-0.112287 - 6.32356i) q^{40} +(0.664135 + 1.15032i) q^{41} +(2.70038 - 12.2847i) q^{42} +(-3.36983 + 12.5764i) q^{43} +(10.1658 - 0.926101i) q^{44} +(-10.1144 + 1.45920i) q^{45} +(-9.34453 - 4.84320i) q^{46} +(2.48266 + 9.26542i) q^{47} +(0.880622 - 10.9703i) q^{48} -3.44936i q^{49} +(-5.86070 + 3.95628i) q^{50} +(-0.620036 - 0.357978i) q^{51} +(-5.65273 + 2.08039i) q^{52} +(-1.99614 - 7.44969i) q^{53} +(-6.10315 + 0.277423i) q^{54} +(-7.05924 - 8.96766i) q^{55} +(-1.24210 - 9.05826i) q^{56} +(9.66287 + 7.10362i) q^{57} +(1.63108 + 5.14099i) q^{58} +(-0.751075 - 1.30090i) q^{59} +(-10.8222 + 5.85512i) q^{60} +(-0.805951 + 1.39595i) q^{61} +(3.39110 - 3.71407i) q^{62} +(-14.2698 + 3.82357i) q^{63} +(-2.15348 - 7.70471i) q^{64} +(5.39309 + 4.03316i) q^{65} +(-10.7006 - 16.7304i) q^{66} +(-0.934759 - 3.48857i) q^{67} +(-0.512847 - 0.0885356i) q^{68} +20.4768i q^{69} +(-7.73676 + 6.68103i) q^{70} +(5.93706 - 3.42776i) q^{71} +(-11.9156 + 5.01077i) q^{72} +(-0.106260 - 0.0284723i) q^{73} +(-0.159183 - 3.50195i) q^{74} +(12.0805 + 6.58137i) q^{75} +(8.37520 + 2.41992i) q^{76} +(-11.6664 - 11.6664i) q^{77} +(8.65409 + 7.90154i) q^{78} +(-5.86204 - 10.1534i) q^{79} +(-5.91262 + 6.71125i) q^{80} +(-0.912151 - 1.57989i) q^{81} +(0.403287 - 1.83466i) q^{82} +(-0.134588 - 0.134588i) q^{83} +(-14.5344 + 10.2549i) q^{84} +(0.229307 + 0.534772i) q^{85} +(15.5117 - 9.92115i) q^{86} +(7.41985 - 7.41985i) q^{87} +(-11.5000 - 8.72651i) q^{88} +(8.24527 + 4.76041i) q^{89} +(11.9547 + 8.12073i) q^{90} +(8.43116 + 4.86773i) q^{91} +(5.14094 + 13.9687i) q^{92} +(-9.45124 - 2.53245i) q^{93} +(6.24230 - 12.0440i) q^{94} +(-2.83148 - 9.32645i) q^{95} +(-11.3805 + 10.6174i) q^{96} +(-1.29206 + 4.82202i) q^{97} +(-3.28917 + 3.60243i) q^{98} +(-11.6629 + 20.2007i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04438 0.953560i −0.738486 0.674269i
\(3\) −0.712111 + 2.65764i −0.411138 + 1.53439i 0.381310 + 0.924447i \(0.375473\pi\)
−0.792448 + 0.609940i \(0.791194\pi\)
\(4\) 0.181448 + 1.99175i 0.0907239 + 0.995876i
\(5\) 1.75700 1.38309i 0.785755 0.618537i
\(6\) 3.27793 2.09653i 1.33821 0.855906i
\(7\) 2.28576 2.28576i 0.863934 0.863934i −0.127858 0.991792i \(-0.540810\pi\)
0.991792 + 0.127858i \(0.0408102\pi\)
\(8\) 1.70975 2.25316i 0.604490 0.796613i
\(9\) −3.95785 2.28507i −1.31928 0.761688i
\(10\) −3.15383 0.230937i −0.997330 0.0730287i
\(11\) 5.10396i 1.53890i −0.638707 0.769450i \(-0.720530\pi\)
0.638707 0.769450i \(-0.279470\pi\)
\(12\) −5.42256 0.936127i −1.56536 0.270237i
\(13\) 0.779486 + 2.90908i 0.216191 + 0.806834i 0.985744 + 0.168252i \(0.0538122\pi\)
−0.769553 + 0.638582i \(0.779521\pi\)
\(14\) −4.56680 + 0.207587i −1.22053 + 0.0554799i
\(15\) 2.42457 + 5.65439i 0.626022 + 1.45996i
\(16\) −3.93415 + 0.722798i −0.983538 + 0.180699i
\(17\) −0.0673490 + 0.251350i −0.0163345 + 0.0609613i −0.973612 0.228210i \(-0.926713\pi\)
0.957278 + 0.289171i \(0.0933795\pi\)
\(18\) 1.95454 + 6.16052i 0.460690 + 1.45205i
\(19\) 1.58489 4.06056i 0.363598 0.931556i
\(20\) 3.07358 + 3.24855i 0.687273 + 0.726399i
\(21\) 4.44699 + 7.70242i 0.970413 + 1.68081i
\(22\) −4.86693 + 5.33046i −1.03763 + 1.13646i
\(23\) 7.18875 1.92622i 1.49896 0.401645i 0.586207 0.810161i \(-0.300620\pi\)
0.912751 + 0.408516i \(0.133954\pi\)
\(24\) 4.77055 + 6.14841i 0.973784 + 1.25504i
\(25\) 1.17411 4.86019i 0.234823 0.972038i
\(26\) 1.95991 3.78147i 0.384369 0.741606i
\(27\) 3.05473 3.05473i 0.587882 0.587882i
\(28\) 4.96740 + 4.13791i 0.938751 + 0.781992i
\(29\) −3.30285 1.90690i −0.613324 0.354103i 0.160941 0.986964i \(-0.448547\pi\)
−0.774265 + 0.632861i \(0.781880\pi\)
\(30\) 2.85963 8.21729i 0.522094 1.50026i
\(31\) 3.55626i 0.638723i 0.947633 + 0.319361i \(0.103468\pi\)
−0.947633 + 0.319361i \(0.896532\pi\)
\(32\) 4.79797 + 2.99658i 0.848170 + 0.529725i
\(33\) 13.5645 + 3.63458i 2.36127 + 0.632700i
\(34\) 0.310015 0.198283i 0.0531671 0.0340052i
\(35\) 0.854668 7.17749i 0.144465 1.21322i
\(36\) 3.83314 8.29767i 0.638857 1.38295i
\(37\) 1.75278 + 1.75278i 0.288156 + 0.288156i 0.836351 0.548195i \(-0.184685\pi\)
−0.548195 + 0.836351i \(0.684685\pi\)
\(38\) −5.52720 + 2.72947i −0.896631 + 0.442779i
\(39\) −8.28636 −1.32688
\(40\) −0.112287 6.32356i −0.0177541 0.999842i
\(41\) 0.664135 + 1.15032i 0.103720 + 0.179649i 0.913215 0.407479i \(-0.133592\pi\)
−0.809494 + 0.587128i \(0.800259\pi\)
\(42\) 2.70038 12.2847i 0.416677 1.89557i
\(43\) −3.36983 + 12.5764i −0.513895 + 1.91788i −0.140989 + 0.990011i \(0.545028\pi\)
−0.372905 + 0.927869i \(0.621638\pi\)
\(44\) 10.1658 0.926101i 1.53255 0.139615i
\(45\) −10.1144 + 1.45920i −1.50777 + 0.217525i
\(46\) −9.34453 4.84320i −1.37778 0.714091i
\(47\) 2.48266 + 9.26542i 0.362133 + 1.35150i 0.871265 + 0.490812i \(0.163300\pi\)
−0.509132 + 0.860688i \(0.670033\pi\)
\(48\) 0.880622 10.9703i 0.127107 1.58342i
\(49\) 3.44936i 0.492765i
\(50\) −5.86070 + 3.95628i −0.828828 + 0.559503i
\(51\) −0.620036 0.357978i −0.0868224 0.0501269i
\(52\) −5.65273 + 2.08039i −0.783893 + 0.288498i
\(53\) −1.99614 7.44969i −0.274191 1.02329i −0.956382 0.292120i \(-0.905639\pi\)
0.682191 0.731174i \(-0.261027\pi\)
\(54\) −6.10315 + 0.277423i −0.830534 + 0.0377525i
\(55\) −7.05924 8.96766i −0.951868 1.20920i
\(56\) −1.24210 9.05826i −0.165982 1.21046i
\(57\) 9.66287 + 7.10362i 1.27988 + 0.940897i
\(58\) 1.63108 + 5.14099i 0.214171 + 0.675046i
\(59\) −0.751075 1.30090i −0.0977816 0.169363i 0.812984 0.582285i \(-0.197841\pi\)
−0.910766 + 0.412923i \(0.864508\pi\)
\(60\) −10.8222 + 5.85512i −1.39714 + 0.755893i
\(61\) −0.805951 + 1.39595i −0.103191 + 0.178733i −0.912998 0.407964i \(-0.866239\pi\)
0.809806 + 0.586697i \(0.199572\pi\)
\(62\) 3.39110 3.71407i 0.430671 0.471688i
\(63\) −14.2698 + 3.82357i −1.79782 + 0.481725i
\(64\) −2.15348 7.70471i −0.269185 0.963089i
\(65\) 5.39309 + 4.03316i 0.668930 + 0.500252i
\(66\) −10.7006 16.7304i −1.31715 2.05937i
\(67\) −0.934759 3.48857i −0.114199 0.426197i 0.885027 0.465540i \(-0.154140\pi\)
−0.999226 + 0.0393437i \(0.987473\pi\)
\(68\) −0.512847 0.0885356i −0.0621918 0.0107365i
\(69\) 20.4768i 2.46511i
\(70\) −7.73676 + 6.68103i −0.924720 + 0.798535i
\(71\) 5.93706 3.42776i 0.704600 0.406801i −0.104459 0.994529i \(-0.533311\pi\)
0.809058 + 0.587728i \(0.199978\pi\)
\(72\) −11.9156 + 5.01077i −1.40426 + 0.590525i
\(73\) −0.106260 0.0284723i −0.0124368 0.00333243i 0.252595 0.967572i \(-0.418716\pi\)
−0.265032 + 0.964240i \(0.585383\pi\)
\(74\) −0.159183 3.50195i −0.0185047 0.407093i
\(75\) 12.0805 + 6.58137i 1.39494 + 0.759951i
\(76\) 8.37520 + 2.41992i 0.960701 + 0.277584i
\(77\) −11.6664 11.6664i −1.32951 1.32951i
\(78\) 8.65409 + 7.90154i 0.979882 + 0.894673i
\(79\) −5.86204 10.1534i −0.659531 1.14234i −0.980737 0.195332i \(-0.937422\pi\)
0.321206 0.947009i \(-0.395912\pi\)
\(80\) −5.91262 + 6.71125i −0.661051 + 0.750341i
\(81\) −0.912151 1.57989i −0.101350 0.175543i
\(82\) 0.403287 1.83466i 0.0445356 0.202604i
\(83\) −0.134588 0.134588i −0.0147730 0.0147730i 0.699682 0.714455i \(-0.253325\pi\)
−0.714455 + 0.699682i \(0.753325\pi\)
\(84\) −14.5344 + 10.2549i −1.58583 + 1.11890i
\(85\) 0.229307 + 0.534772i 0.0248719 + 0.0580041i
\(86\) 15.5117 9.92115i 1.67267 1.06983i
\(87\) 7.41985 7.41985i 0.795492 0.795492i
\(88\) −11.5000 8.72651i −1.22591 0.930249i
\(89\) 8.24527 + 4.76041i 0.873997 + 0.504602i 0.868674 0.495383i \(-0.164972\pi\)
0.00532255 + 0.999986i \(0.498306\pi\)
\(90\) 11.9547 + 8.12073i 1.26014 + 0.856000i
\(91\) 8.43116 + 4.86773i 0.883826 + 0.510277i
\(92\) 5.14094 + 13.9687i 0.535980 + 1.45634i
\(93\) −9.45124 2.53245i −0.980047 0.262603i
\(94\) 6.24230 12.0440i 0.643844 1.24224i
\(95\) −2.83148 9.32645i −0.290503 0.956874i
\(96\) −11.3805 + 10.6174i −1.16152 + 1.08363i
\(97\) −1.29206 + 4.82202i −0.131188 + 0.489602i −0.999984 0.00556811i \(-0.998228\pi\)
0.868796 + 0.495170i \(0.164894\pi\)
\(98\) −3.28917 + 3.60243i −0.332256 + 0.363900i
\(99\) −11.6629 + 20.2007i −1.17216 + 2.03025i
\(100\) 9.89334 + 1.45667i 0.989334 + 0.145667i
\(101\) −6.98519 + 12.0987i −0.695053 + 1.20387i 0.275110 + 0.961413i \(0.411286\pi\)
−0.970163 + 0.242454i \(0.922048\pi\)
\(102\) 0.306198 + 0.965105i 0.0303181 + 0.0955597i
\(103\) −0.373274 0.373274i −0.0367798 0.0367798i 0.688478 0.725258i \(-0.258279\pi\)
−0.725258 + 0.688478i \(0.758279\pi\)
\(104\) 7.88736 + 3.21751i 0.773420 + 0.315503i
\(105\) 18.4665 + 7.38257i 1.80215 + 0.720465i
\(106\) −5.01900 + 9.68372i −0.487489 + 0.940566i
\(107\) −8.91056 + 8.91056i −0.861416 + 0.861416i −0.991503 0.130087i \(-0.958474\pi\)
0.130087 + 0.991503i \(0.458474\pi\)
\(108\) 6.63853 + 5.52998i 0.638793 + 0.532123i
\(109\) −11.3481 + 6.55186i −1.08696 + 0.627554i −0.932764 0.360487i \(-0.882611\pi\)
−0.154191 + 0.988041i \(0.549277\pi\)
\(110\) −1.17869 + 16.0970i −0.112384 + 1.53479i
\(111\) −5.90643 + 3.41008i −0.560614 + 0.323670i
\(112\) −7.34037 + 10.6447i −0.693600 + 1.00583i
\(113\) 9.87987 9.87987i 0.929420 0.929420i −0.0682482 0.997668i \(-0.521741\pi\)
0.997668 + 0.0682482i \(0.0217410\pi\)
\(114\) −3.31796 16.6330i −0.310755 1.55782i
\(115\) 9.96651 13.3271i 0.929382 1.24276i
\(116\) 3.19878 6.92447i 0.297000 0.642921i
\(117\) 3.56235 13.2949i 0.329340 1.22911i
\(118\) −0.456080 + 2.07483i −0.0419856 + 0.191003i
\(119\) 0.420581 + 0.728467i 0.0385546 + 0.0667785i
\(120\) 16.8857 + 4.20466i 1.54144 + 0.383831i
\(121\) −15.0504 −1.36822
\(122\) 2.17284 0.689374i 0.196719 0.0624130i
\(123\) −3.53006 + 0.945876i −0.318295 + 0.0852868i
\(124\) −7.08318 + 0.645275i −0.636089 + 0.0579474i
\(125\) −4.65917 10.1633i −0.416729 0.909031i
\(126\) 18.5490 + 9.61383i 1.65248 + 0.856468i
\(127\) −0.0631413 0.235647i −0.00560289 0.0209103i 0.963068 0.269259i \(-0.0867788\pi\)
−0.968671 + 0.248349i \(0.920112\pi\)
\(128\) −5.09786 + 10.1001i −0.450591 + 0.892730i
\(129\) −31.0238 17.9116i −2.73149 1.57703i
\(130\) −1.78655 9.35477i −0.156691 0.820468i
\(131\) −4.86252 + 2.80738i −0.424840 + 0.245282i −0.697146 0.716929i \(-0.745547\pi\)
0.272306 + 0.962211i \(0.412214\pi\)
\(132\) −4.77795 + 27.6765i −0.415867 + 2.40893i
\(133\) −5.65878 12.9041i −0.490679 1.11893i
\(134\) −2.35032 + 4.53473i −0.203037 + 0.391741i
\(135\) 1.14219 9.59213i 0.0983045 0.825559i
\(136\) 0.451181 + 0.581494i 0.0386885 + 0.0498627i
\(137\) 2.16854 0.581058i 0.185271 0.0496431i −0.164991 0.986295i \(-0.552759\pi\)
0.350261 + 0.936652i \(0.386093\pi\)
\(138\) 19.5258 21.3855i 1.66215 1.82045i
\(139\) 1.44559 2.50384i 0.122614 0.212373i −0.798184 0.602414i \(-0.794206\pi\)
0.920798 + 0.390041i \(0.127539\pi\)
\(140\) 14.4509 + 0.399949i 1.22132 + 0.0338018i
\(141\) −26.3920 −2.22261
\(142\) −9.46911 2.08146i −0.794630 0.174673i
\(143\) 14.8478 3.97846i 1.24164 0.332696i
\(144\) 17.2224 + 6.12907i 1.43520 + 0.510756i
\(145\) −8.44054 + 1.21772i −0.700949 + 0.101126i
\(146\) 0.0838256 + 0.131061i 0.00693745 + 0.0108467i
\(147\) 9.16713 + 2.45633i 0.756092 + 0.202594i
\(148\) −3.17307 + 3.80914i −0.260825 + 0.313110i
\(149\) 17.8719 10.3183i 1.46412 0.845310i 0.464922 0.885352i \(-0.346082\pi\)
0.999198 + 0.0400419i \(0.0127491\pi\)
\(150\) −6.34089 18.3929i −0.517732 1.50178i
\(151\) 9.46486i 0.770239i 0.922867 + 0.385120i \(0.125840\pi\)
−0.922867 + 0.385120i \(0.874160\pi\)
\(152\) −6.43933 10.5136i −0.522299 0.852763i
\(153\) 0.840907 0.840907i 0.0679833 0.0679833i
\(154\) 1.05951 + 23.3087i 0.0853780 + 1.87827i
\(155\) 4.91863 + 6.24835i 0.395074 + 0.501880i
\(156\) −1.50354 16.5044i −0.120380 1.32141i
\(157\) −2.37071 + 8.84762i −0.189204 + 0.706117i 0.804488 + 0.593969i \(0.202440\pi\)
−0.993691 + 0.112148i \(0.964227\pi\)
\(158\) −3.55965 + 16.1937i −0.283190 + 1.28830i
\(159\) 21.2200 1.68286
\(160\) 12.5746 1.37104i 0.994108 0.108390i
\(161\) 12.0289 20.8346i 0.948007 1.64200i
\(162\) −0.553891 + 2.51979i −0.0435178 + 0.197974i
\(163\) −6.46873 6.46873i −0.506670 0.506670i 0.406833 0.913503i \(-0.366633\pi\)
−0.913503 + 0.406833i \(0.866633\pi\)
\(164\) −2.17064 + 1.53151i −0.169498 + 0.119591i
\(165\) 28.8597 12.3749i 2.24673 0.963386i
\(166\) 0.0122230 + 0.268899i 0.000948686 + 0.0208706i
\(167\) −5.55569 20.7341i −0.429913 1.60446i −0.752956 0.658071i \(-0.771373\pi\)
0.323043 0.946384i \(-0.395294\pi\)
\(168\) 24.9581 + 3.14945i 1.92556 + 0.242985i
\(169\) 3.40317 1.96482i 0.261782 0.151140i
\(170\) 0.270453 0.777162i 0.0207428 0.0596056i
\(171\) −15.5514 + 12.4495i −1.18924 + 0.952038i
\(172\) −25.6605 4.42991i −1.95659 0.337778i
\(173\) −3.10230 0.831258i −0.235863 0.0631994i 0.138951 0.990299i \(-0.455627\pi\)
−0.374814 + 0.927100i \(0.622294\pi\)
\(174\) −14.8244 + 0.673853i −1.12383 + 0.0510847i
\(175\) −8.42547 13.7929i −0.636906 1.04265i
\(176\) 3.68913 + 20.0797i 0.278079 + 1.51357i
\(177\) 3.99217 1.06970i 0.300070 0.0804034i
\(178\) −4.07184 12.8340i −0.305197 0.961951i
\(179\) 11.7201 0.876005 0.438002 0.898974i \(-0.355686\pi\)
0.438002 + 0.898974i \(0.355686\pi\)
\(180\) −4.74161 19.8806i −0.353419 1.48181i
\(181\) −3.53870 + 6.12920i −0.263029 + 0.455580i −0.967045 0.254604i \(-0.918055\pi\)
0.704016 + 0.710184i \(0.251388\pi\)
\(182\) −4.16364 13.1234i −0.308630 0.972769i
\(183\) −3.13600 3.13600i −0.231819 0.231819i
\(184\) 7.95092 19.4908i 0.586149 1.43688i
\(185\) 5.50390 + 0.655384i 0.404655 + 0.0481848i
\(186\) 7.45581 + 11.6572i 0.546687 + 0.854744i
\(187\) 1.28288 + 0.343746i 0.0938133 + 0.0251372i
\(188\) −18.0039 + 6.62604i −1.31307 + 0.483253i
\(189\) 13.9647i 1.01578i
\(190\) −5.93620 + 12.4403i −0.430657 + 0.902516i
\(191\) 5.61038i 0.405953i 0.979184 + 0.202976i \(0.0650614\pi\)
−0.979184 + 0.202976i \(0.934939\pi\)
\(192\) 22.0098 0.236549i 1.58842 0.0170715i
\(193\) 10.0876 + 2.70296i 0.726119 + 0.194563i 0.602900 0.797817i \(-0.294012\pi\)
0.123219 + 0.992380i \(0.460678\pi\)
\(194\) 5.94748 3.80396i 0.427004 0.273108i
\(195\) −14.5592 + 11.4608i −1.04260 + 0.820725i
\(196\) 6.87026 0.625878i 0.490733 0.0447056i
\(197\) 5.85514 + 5.85514i 0.417161 + 0.417161i 0.884224 0.467063i \(-0.154688\pi\)
−0.467063 + 0.884224i \(0.654688\pi\)
\(198\) 31.4430 9.97589i 2.23456 0.708956i
\(199\) −0.312937 + 0.542023i −0.0221835 + 0.0384230i −0.876904 0.480665i \(-0.840395\pi\)
0.854721 + 0.519088i \(0.173728\pi\)
\(200\) −8.94335 10.9552i −0.632390 0.774650i
\(201\) 9.93700 0.700902
\(202\) 18.8320 5.97482i 1.32502 0.420387i
\(203\) −11.9082 + 3.19080i −0.835794 + 0.223950i
\(204\) 0.600499 1.29991i 0.0420434 0.0910121i
\(205\) 2.75788 + 1.10255i 0.192619 + 0.0770053i
\(206\) 0.0338999 + 0.745779i 0.00236192 + 0.0519609i
\(207\) −32.8535 8.80308i −2.28348 0.611856i
\(208\) −5.16930 10.8814i −0.358426 0.754487i
\(209\) −20.7249 8.08919i −1.43357 0.559541i
\(210\) −12.2463 25.3191i −0.845075 1.74719i
\(211\) −5.60054 + 3.23347i −0.385557 + 0.222602i −0.680233 0.732996i \(-0.738122\pi\)
0.294676 + 0.955597i \(0.404788\pi\)
\(212\) 14.4757 5.32754i 0.994198 0.365897i
\(213\) 4.88190 + 18.2195i 0.334502 + 1.24838i
\(214\) 17.8027 0.809235i 1.21697 0.0553182i
\(215\) 11.4735 + 26.7575i 0.782485 + 1.82485i
\(216\) −1.65996 12.1056i −0.112946 0.823684i
\(217\) 8.12873 + 8.12873i 0.551814 + 0.551814i
\(218\) 18.0993 + 3.97853i 1.22584 + 0.269460i
\(219\) 0.151338 0.262125i 0.0102265 0.0177128i
\(220\) 16.5805 15.6874i 1.11786 1.05765i
\(221\) −0.783694 −0.0527170
\(222\) 9.42026 + 2.07072i 0.632246 + 0.138978i
\(223\) −2.28680 + 8.53445i −0.153135 + 0.571509i 0.846122 + 0.532989i \(0.178931\pi\)
−0.999258 + 0.0385204i \(0.987736\pi\)
\(224\) 17.8164 4.11755i 1.19041 0.275115i
\(225\) −15.7528 + 16.5530i −1.05019 + 1.10353i
\(226\) −19.7394 + 0.897266i −1.31304 + 0.0596852i
\(227\) −18.7422 + 18.7422i −1.24397 + 1.24397i −0.285625 + 0.958342i \(0.592201\pi\)
−0.958342 + 0.285625i \(0.907799\pi\)
\(228\) −12.3953 + 20.5350i −0.820902 + 1.35996i
\(229\) 3.05931i 0.202165i 0.994878 + 0.101083i \(0.0322306\pi\)
−0.994878 + 0.101083i \(0.967769\pi\)
\(230\) −23.1170 + 4.41483i −1.52429 + 0.291105i
\(231\) 39.3128 22.6973i 2.58659 1.49337i
\(232\) −9.94363 + 4.18153i −0.652831 + 0.274531i
\(233\) −26.1723 7.01286i −1.71461 0.459427i −0.738060 0.674735i \(-0.764258\pi\)
−0.976546 + 0.215307i \(0.930925\pi\)
\(234\) −16.3979 + 10.4880i −1.07196 + 0.685619i
\(235\) 17.1770 + 12.8456i 1.12050 + 0.837956i
\(236\) 2.45479 1.73200i 0.159793 0.112744i
\(237\) 31.1583 8.34885i 2.02395 0.542316i
\(238\) 0.255392 1.16184i 0.0165546 0.0753111i
\(239\) −24.3356 −1.57414 −0.787069 0.616865i \(-0.788402\pi\)
−0.787069 + 0.616865i \(0.788402\pi\)
\(240\) −13.6256 20.4928i −0.879530 1.32280i
\(241\) −4.94342 + 8.56226i −0.318434 + 0.551544i −0.980161 0.198201i \(-0.936490\pi\)
0.661728 + 0.749744i \(0.269824\pi\)
\(242\) 15.7183 + 14.3514i 1.01041 + 0.922544i
\(243\) 17.3668 4.65343i 1.11408 0.298518i
\(244\) −2.92662 1.35196i −0.187358 0.0865506i
\(245\) −4.77077 6.06053i −0.304794 0.387193i
\(246\) 4.58866 + 2.37827i 0.292562 + 0.151633i
\(247\) 13.0479 + 1.44541i 0.830218 + 0.0919695i
\(248\) 8.01282 + 6.08033i 0.508815 + 0.386101i
\(249\) 0.453528 0.261845i 0.0287412 0.0165937i
\(250\) −4.82536 + 15.0571i −0.305183 + 0.952294i
\(251\) 20.2867 + 11.7125i 1.28048 + 0.739288i 0.976937 0.213529i \(-0.0684958\pi\)
0.303547 + 0.952817i \(0.401829\pi\)
\(252\) −10.2048 27.7281i −0.642844 1.74670i
\(253\) −9.83134 36.6911i −0.618091 2.30675i
\(254\) −0.158760 + 0.306313i −0.00996148 + 0.0192198i
\(255\) −1.58452 + 0.228599i −0.0992266 + 0.0143154i
\(256\) 14.9551 5.68720i 0.934695 0.355450i
\(257\) −4.69654 + 1.25843i −0.292962 + 0.0784990i −0.402307 0.915505i \(-0.631791\pi\)
0.109345 + 0.994004i \(0.465125\pi\)
\(258\) 15.3207 + 48.2894i 0.953828 + 3.00637i
\(259\) 8.01286 0.497895
\(260\) −7.05450 + 11.4735i −0.437501 + 0.711556i
\(261\) 8.71480 + 15.0945i 0.539432 + 0.934324i
\(262\) 7.75531 + 1.70474i 0.479125 + 0.105319i
\(263\) −1.86684 + 6.96713i −0.115114 + 0.429611i −0.999295 0.0375323i \(-0.988050\pi\)
0.884181 + 0.467144i \(0.154717\pi\)
\(264\) 31.3812 24.3487i 1.93138 1.49856i
\(265\) −13.8108 10.3283i −0.848392 0.634461i
\(266\) −6.39493 + 18.8727i −0.392098 + 1.15716i
\(267\) −18.5230 + 18.5230i −1.13359 + 1.13359i
\(268\) 6.77876 2.49480i 0.414078 0.152394i
\(269\) 1.24833 0.720723i 0.0761120 0.0439433i −0.461461 0.887160i \(-0.652675\pi\)
0.537573 + 0.843217i \(0.319341\pi\)
\(270\) −10.3395 + 8.92865i −0.629245 + 0.543380i
\(271\) 23.0515 13.3088i 1.40028 0.808452i 0.405859 0.913936i \(-0.366972\pi\)
0.994421 + 0.105484i \(0.0336390\pi\)
\(272\) 0.0832861 1.03753i 0.00504996 0.0629094i
\(273\) −18.9406 + 18.9406i −1.14634 + 1.14634i
\(274\) −2.81884 1.46099i −0.170293 0.0882614i
\(275\) −24.8062 5.99263i −1.49587 0.361369i
\(276\) −40.7846 + 3.71546i −2.45495 + 0.223645i
\(277\) 0.556270 + 0.556270i 0.0334230 + 0.0334230i 0.723621 0.690198i \(-0.242476\pi\)
−0.690198 + 0.723621i \(0.742476\pi\)
\(278\) −3.89731 + 1.23650i −0.233745 + 0.0741601i
\(279\) 8.12628 14.0751i 0.486508 0.842656i
\(280\) −14.7108 14.1974i −0.879137 0.848460i
\(281\) −2.57064 + 4.45248i −0.153351 + 0.265612i −0.932458 0.361280i \(-0.882340\pi\)
0.779106 + 0.626892i \(0.215673\pi\)
\(282\) 27.5633 + 25.1664i 1.64137 + 1.49864i
\(283\) −1.37322 + 5.12494i −0.0816296 + 0.304646i −0.994655 0.103258i \(-0.967073\pi\)
0.913025 + 0.407904i \(0.133740\pi\)
\(284\) 7.90452 + 11.2032i 0.469047 + 0.664787i
\(285\) 26.8026 0.883560i 1.58765 0.0523376i
\(286\) −19.3004 10.0033i −1.14126 0.591506i
\(287\) 4.14739 + 1.11129i 0.244813 + 0.0655974i
\(288\) −12.1423 22.8237i −0.715490 1.34490i
\(289\) 14.6638 + 8.46614i 0.862576 + 0.498008i
\(290\) 9.97628 + 6.77681i 0.585827 + 0.397948i
\(291\) −11.8951 6.86763i −0.697302 0.402588i
\(292\) 0.0374291 0.216810i 0.00219037 0.0126878i
\(293\) 2.12324 2.12324i 0.124041 0.124041i −0.642361 0.766402i \(-0.722045\pi\)
0.766402 + 0.642361i \(0.222045\pi\)
\(294\) −7.23169 11.3067i −0.421761 0.659422i
\(295\) −3.11890 1.24688i −0.181590 0.0725961i
\(296\) 6.94613 0.952474i 0.403735 0.0553614i
\(297\) −15.5912 15.5912i −0.904693 0.904693i
\(298\) −28.5041 6.26566i −1.65120 0.362960i
\(299\) 11.2071 + 19.4112i 0.648121 + 1.12258i
\(300\) −10.9165 + 25.2556i −0.630263 + 1.45813i
\(301\) 21.0439 + 36.4491i 1.21295 + 2.10089i
\(302\) 9.02531 9.88489i 0.519348 0.568811i
\(303\) −27.1797 27.1797i −1.56143 1.56143i
\(304\) −3.30022 + 17.1204i −0.189281 + 0.981923i
\(305\) 0.514667 + 3.56739i 0.0294697 + 0.204268i
\(306\) −1.68008 + 0.0763692i −0.0960438 + 0.00436573i
\(307\) 3.49141 + 0.935520i 0.199265 + 0.0533929i 0.357071 0.934077i \(-0.383775\pi\)
−0.157806 + 0.987470i \(0.550442\pi\)
\(308\) 21.1197 25.3534i 1.20341 1.44464i
\(309\) 1.25784 0.726214i 0.0715560 0.0413129i
\(310\) 0.821272 11.2158i 0.0466451 0.637017i
\(311\) 11.7111i 0.664077i 0.943266 + 0.332038i \(0.107736\pi\)
−0.943266 + 0.332038i \(0.892264\pi\)
\(312\) −14.1676 + 18.6705i −0.802085 + 1.05701i
\(313\) 4.69744 + 17.5311i 0.265515 + 0.990915i 0.961935 + 0.273280i \(0.0881085\pi\)
−0.696420 + 0.717635i \(0.745225\pi\)
\(314\) 10.9127 6.97964i 0.615837 0.393884i
\(315\) −19.7837 + 26.4544i −1.11468 + 1.49054i
\(316\) 19.1593 13.5180i 1.07780 0.760449i
\(317\) −28.3667 + 7.60083i −1.59323 + 0.426905i −0.942990 0.332822i \(-0.891999\pi\)
−0.650242 + 0.759727i \(0.725333\pi\)
\(318\) −22.1617 20.2346i −1.24277 1.13470i
\(319\) −9.73275 + 16.8576i −0.544929 + 0.943845i
\(320\) −14.4400 10.5587i −0.807220 0.590251i
\(321\) −17.3357 30.0263i −0.967585 1.67591i
\(322\) −32.4297 + 10.2889i −1.80724 + 0.573380i
\(323\) 0.913880 + 0.671835i 0.0508496 + 0.0373819i
\(324\) 2.98124 2.10345i 0.165625 0.116858i
\(325\) 15.0539 0.372856i 0.835040 0.0206823i
\(326\) 0.587474 + 12.9241i 0.0325372 + 0.715800i
\(327\) −9.33130 34.8249i −0.516022 1.92582i
\(328\) 3.72736 + 0.470354i 0.205809 + 0.0259709i
\(329\) 26.8532 + 15.5037i 1.48047 + 0.854748i
\(330\) −41.9407 14.5954i −2.30876 0.803451i
\(331\) 30.4556i 1.67399i −0.547209 0.836996i \(-0.684310\pi\)
0.547209 0.836996i \(-0.315690\pi\)
\(332\) 0.243646 0.292487i 0.0133718 0.0160523i
\(333\) −2.93202 10.9425i −0.160674 0.599643i
\(334\) −13.9690 + 26.9519i −0.764349 + 1.47474i
\(335\) −6.46739 4.83657i −0.353351 0.264250i
\(336\) −23.0624 27.0882i −1.25816 1.47778i
\(337\) −2.68241 + 10.0109i −0.146120 + 0.545327i 0.853583 + 0.520957i \(0.174425\pi\)
−0.999703 + 0.0243703i \(0.992242\pi\)
\(338\) −5.42777 1.19311i −0.295232 0.0648967i
\(339\) 19.2215 + 33.2927i 1.04397 + 1.80821i
\(340\) −1.02353 + 0.553757i −0.0555085 + 0.0300317i
\(341\) 18.1510 0.982931
\(342\) 28.1129 + 1.82718i 1.52017 + 0.0988028i
\(343\) 8.11590 + 8.11590i 0.438218 + 0.438218i
\(344\) 22.5750 + 29.0953i 1.21716 + 1.56871i
\(345\) 28.3212 + 35.9777i 1.52476 + 1.93698i
\(346\) 2.44732 + 3.82637i 0.131569 + 0.205707i
\(347\) −15.2612 4.08922i −0.819262 0.219521i −0.175238 0.984526i \(-0.556070\pi\)
−0.644024 + 0.765005i \(0.722736\pi\)
\(348\) 16.1248 + 13.4322i 0.864381 + 0.720041i
\(349\) 1.93687i 0.103678i 0.998655 + 0.0518391i \(0.0165083\pi\)
−0.998655 + 0.0518391i \(0.983492\pi\)
\(350\) −4.35303 + 22.4392i −0.232679 + 1.19943i
\(351\) 11.2676 + 6.50533i 0.601418 + 0.347229i
\(352\) 15.2944 24.4886i 0.815194 1.30525i
\(353\) 14.0262 14.0262i 0.746540 0.746540i −0.227288 0.973828i \(-0.572986\pi\)
0.973828 + 0.227288i \(0.0729858\pi\)
\(354\) −5.18935 2.68960i −0.275811 0.142951i
\(355\) 5.69052 14.2341i 0.302021 0.755467i
\(356\) −7.98547 + 17.2863i −0.423229 + 0.916172i
\(357\) −2.23550 + 0.599001i −0.118315 + 0.0317025i
\(358\) −12.2403 11.1759i −0.646918 0.590663i
\(359\) −7.27401 12.5989i −0.383907 0.664947i 0.607710 0.794159i \(-0.292088\pi\)
−0.991617 + 0.129212i \(0.958755\pi\)
\(360\) −14.0053 + 25.2843i −0.738146 + 1.33260i
\(361\) −13.9763 12.8710i −0.735593 0.677423i
\(362\) 9.54030 3.02684i 0.501427 0.159087i
\(363\) 10.7175 39.9984i 0.562525 2.09937i
\(364\) −8.16551 + 17.6760i −0.427989 + 0.926476i
\(365\) −0.226079 + 0.0969415i −0.0118335 + 0.00507415i
\(366\) 0.284803 + 6.26552i 0.0148869 + 0.327504i
\(367\) 2.77937 + 10.3727i 0.145082 + 0.541452i 0.999752 + 0.0222807i \(0.00709275\pi\)
−0.854670 + 0.519172i \(0.826241\pi\)
\(368\) −26.8894 + 12.7741i −1.40171 + 0.665894i
\(369\) 6.07037i 0.316011i
\(370\) −5.12320 5.93276i −0.266342 0.308430i
\(371\) −21.5909 12.4655i −1.12094 0.647176i
\(372\) 3.32911 19.2840i 0.172606 0.999830i
\(373\) −18.7386 + 18.7386i −0.970246 + 0.970246i −0.999570 0.0293243i \(-0.990664\pi\)
0.0293243 + 0.999570i \(0.490664\pi\)
\(374\) −1.01203 1.58230i −0.0523306 0.0818189i
\(375\) 30.3281 5.14499i 1.56614 0.265686i
\(376\) 25.1212 + 10.2478i 1.29553 + 0.528488i
\(377\) 2.97281 11.0947i 0.153107 0.571405i
\(378\) −13.3162 + 14.5844i −0.684911 + 0.750142i
\(379\) 9.44686 0.485253 0.242626 0.970120i \(-0.421991\pi\)
0.242626 + 0.970120i \(0.421991\pi\)
\(380\) 18.0622 7.33186i 0.926572 0.376117i
\(381\) 0.671227 0.0343880
\(382\) 5.34983 5.85935i 0.273721 0.299790i
\(383\) 0.402650 1.50271i 0.0205745 0.0767850i −0.954875 0.297007i \(-0.904012\pi\)
0.975450 + 0.220222i \(0.0706782\pi\)
\(384\) −23.2121 20.7406i −1.18454 1.05842i
\(385\) −36.6336 4.36219i −1.86702 0.222318i
\(386\) −7.95780 12.4420i −0.405041 0.633281i
\(387\) 42.0751 42.0751i 2.13880 2.13880i
\(388\) −9.83871 1.69851i −0.499485 0.0862289i
\(389\) −17.0847 9.86387i −0.866230 0.500118i −0.000136286 1.00000i \(-0.500043\pi\)
−0.866094 + 0.499882i \(0.833377\pi\)
\(390\) 26.1338 + 1.91363i 1.32334 + 0.0969003i
\(391\) 1.93662i 0.0979391i
\(392\) −7.77196 5.89755i −0.392543 0.297871i
\(393\) −3.99833 14.9220i −0.201689 0.752714i
\(394\) −0.531749 11.6982i −0.0267891 0.589347i
\(395\) −24.3426 9.73172i −1.22481 0.489656i
\(396\) −42.3510 19.5642i −2.12822 0.983137i
\(397\) −6.04253 + 22.5510i −0.303266 + 1.13180i 0.631162 + 0.775651i \(0.282578\pi\)
−0.934428 + 0.356152i \(0.884088\pi\)
\(398\) 0.843675 0.267672i 0.0422896 0.0134172i
\(399\) 38.3241 5.84982i 1.91860 0.292857i
\(400\) −1.10621 + 19.9694i −0.0553106 + 0.998469i
\(401\) 1.39710 + 2.41986i 0.0697681 + 0.120842i 0.898799 0.438361i \(-0.144441\pi\)
−0.829031 + 0.559203i \(0.811107\pi\)
\(402\) −10.3780 9.47552i −0.517606 0.472596i
\(403\) −10.3454 + 2.77205i −0.515343 + 0.138086i
\(404\) −25.3651 11.7175i −1.26196 0.582967i
\(405\) −3.78779 1.51428i −0.188217 0.0752454i
\(406\) 15.4793 + 8.02281i 0.768225 + 0.398165i
\(407\) 8.94612 8.94612i 0.443443 0.443443i
\(408\) −1.86669 + 0.784987i −0.0924150 + 0.0388627i
\(409\) 10.9023 + 6.29442i 0.539082 + 0.311239i 0.744707 0.667392i \(-0.232589\pi\)
−0.205625 + 0.978631i \(0.565923\pi\)
\(410\) −1.82892 3.78128i −0.0903240 0.186744i
\(411\) 6.17696i 0.304687i
\(412\) 0.675740 0.811200i 0.0332913 0.0399649i
\(413\) −4.69031 1.25677i −0.230795 0.0618414i
\(414\) 25.9172 + 40.5215i 1.27376 + 1.99152i
\(415\) −0.422619 0.0503239i −0.0207456 0.00247031i
\(416\) −4.97733 + 16.2935i −0.244034 + 0.798854i
\(417\) 5.62488 + 5.62488i 0.275451 + 0.275451i
\(418\) 13.9311 + 28.2106i 0.681393 + 1.37983i
\(419\) −35.1809 −1.71870 −0.859349 0.511390i \(-0.829131\pi\)
−0.859349 + 0.511390i \(0.829131\pi\)
\(420\) −11.3535 + 38.1203i −0.553996 + 1.86008i
\(421\) 5.93334 + 10.2769i 0.289173 + 0.500863i 0.973613 0.228207i \(-0.0732862\pi\)
−0.684439 + 0.729070i \(0.739953\pi\)
\(422\) 8.93239 + 1.96348i 0.434822 + 0.0955809i
\(423\) 11.3461 42.3442i 0.551666 2.05884i
\(424\) −20.1983 8.23952i −0.980914 0.400146i
\(425\) 1.14253 + 0.622442i 0.0554210 + 0.0301929i
\(426\) 12.2748 23.6832i 0.594718 1.14746i
\(427\) 1.34859 + 5.03300i 0.0652628 + 0.243564i
\(428\) −19.3644 16.1308i −0.936015 0.779713i
\(429\) 42.2932i 2.04194i
\(430\) 13.5322 38.8856i 0.652583 1.87523i
\(431\) −12.1087 6.99096i −0.583255 0.336743i 0.179171 0.983818i \(-0.442659\pi\)
−0.762426 + 0.647075i \(0.775992\pi\)
\(432\) −9.80981 + 14.2257i −0.471975 + 0.684435i
\(433\) 9.78049 + 36.5013i 0.470020 + 1.75414i 0.639684 + 0.768638i \(0.279065\pi\)
−0.169663 + 0.985502i \(0.554268\pi\)
\(434\) −0.738232 16.2407i −0.0354363 0.779578i
\(435\) 2.77436 23.2990i 0.133020 1.11710i
\(436\) −15.1088 21.4139i −0.723579 1.02554i
\(437\) 3.57182 32.2432i 0.170863 1.54240i
\(438\) −0.408006 + 0.129448i −0.0194953 + 0.00618525i
\(439\) −15.0895 26.1358i −0.720182 1.24739i −0.960927 0.276804i \(-0.910725\pi\)
0.240744 0.970589i \(-0.422608\pi\)
\(440\) −32.2752 + 0.573106i −1.53866 + 0.0273217i
\(441\) −7.88200 + 13.6520i −0.375333 + 0.650097i
\(442\) 0.818473 + 0.747299i 0.0389308 + 0.0355454i
\(443\) −1.07613 + 0.288348i −0.0511285 + 0.0136998i −0.284293 0.958738i \(-0.591759\pi\)
0.233164 + 0.972437i \(0.425092\pi\)
\(444\) −7.86374 11.1454i −0.373197 0.528937i
\(445\) 21.0710 3.03992i 0.998863 0.144106i
\(446\) 10.5264 6.73259i 0.498439 0.318797i
\(447\) 14.6956 + 54.8447i 0.695077 + 2.59406i
\(448\) −22.5334 12.6888i −1.06460 0.599487i
\(449\) 17.4025i 0.821274i −0.911799 0.410637i \(-0.865306\pi\)
0.911799 0.410637i \(-0.134694\pi\)
\(450\) 32.2361 2.26629i 1.51963 0.106834i
\(451\) 5.87116 3.38972i 0.276462 0.159616i
\(452\) 21.4709 + 17.8856i 1.00991 + 0.841267i
\(453\) −25.1542 6.74003i −1.18185 0.316674i
\(454\) 37.4458 1.70212i 1.75742 0.0798847i
\(455\) 21.5461 3.10845i 1.01010 0.145726i
\(456\) 32.5267 9.62657i 1.52320 0.450805i
\(457\) −15.1221 15.1221i −0.707383 0.707383i 0.258601 0.965984i \(-0.416739\pi\)
−0.965984 + 0.258601i \(0.916739\pi\)
\(458\) 2.91724 3.19508i 0.136314 0.149296i
\(459\) 0.562072 + 0.973537i 0.0262353 + 0.0454408i
\(460\) 28.3526 + 17.4327i 1.32195 + 0.812802i
\(461\) −3.53987 6.13123i −0.164868 0.285560i 0.771740 0.635938i \(-0.219387\pi\)
−0.936608 + 0.350378i \(0.886053\pi\)
\(462\) −62.7006 13.7826i −2.91710 0.641225i
\(463\) 7.12564 + 7.12564i 0.331157 + 0.331157i 0.853026 0.521869i \(-0.174765\pi\)
−0.521869 + 0.853026i \(0.674765\pi\)
\(464\) 14.3722 + 5.11475i 0.667214 + 0.237446i
\(465\) −20.1085 + 8.62240i −0.932507 + 0.399854i
\(466\) 20.6466 + 32.2810i 0.956436 + 1.49539i
\(467\) 4.19217 4.19217i 0.193991 0.193991i −0.603427 0.797418i \(-0.706199\pi\)
0.797418 + 0.603427i \(0.206199\pi\)
\(468\) 27.1265 + 4.68300i 1.25392 + 0.216472i
\(469\) −10.1106 5.83738i −0.466866 0.269545i
\(470\) −5.69017 29.7949i −0.262468 1.37434i
\(471\) −21.8256 12.6010i −1.00567 0.580623i
\(472\) −4.21529 0.531926i −0.194025 0.0244839i
\(473\) 64.1893 + 17.1995i 2.95143 + 0.790833i
\(474\) −40.5022 20.9920i −1.86033 0.964194i
\(475\) −17.8743 12.4704i −0.820127 0.572182i
\(476\) −1.37461 + 0.969871i −0.0630053 + 0.0444540i
\(477\) −9.12261 + 34.0461i −0.417696 + 1.55886i
\(478\) 25.4155 + 23.2054i 1.16248 + 1.06139i
\(479\) 4.68812 8.12007i 0.214206 0.371015i −0.738821 0.673902i \(-0.764617\pi\)
0.953027 + 0.302887i \(0.0979503\pi\)
\(480\) −5.31077 + 34.3950i −0.242403 + 1.56991i
\(481\) −3.73272 + 6.46525i −0.170197 + 0.294790i
\(482\) 13.3274 4.22838i 0.607048 0.192597i
\(483\) 46.8049 + 46.8049i 2.12970 + 2.12970i
\(484\) −2.73086 29.9766i −0.124130 1.36257i
\(485\) 4.39915 + 10.2593i 0.199755 + 0.465852i
\(486\) −22.5748 11.7004i −1.02402 0.530740i
\(487\) −14.0373 + 14.0373i −0.636091 + 0.636091i −0.949589 0.313498i \(-0.898499\pi\)
0.313498 + 0.949589i \(0.398499\pi\)
\(488\) 1.76732 + 4.20267i 0.0800028 + 0.190246i
\(489\) 21.7980 12.5851i 0.985739 0.569116i
\(490\) −0.796584 + 10.8787i −0.0359860 + 0.491449i
\(491\) 7.68111 4.43469i 0.346644 0.200135i −0.316562 0.948572i \(-0.602529\pi\)
0.663206 + 0.748437i \(0.269195\pi\)
\(492\) −2.52447 6.85938i −0.113812 0.309245i
\(493\) 0.701743 0.701743i 0.0316049 0.0316049i
\(494\) −12.2486 13.9515i −0.551092 0.627708i
\(495\) 7.44771 + 51.6235i 0.334750 + 2.32030i
\(496\) −2.57046 13.9909i −0.115417 0.628208i
\(497\) 5.73564 21.4057i 0.257279 0.960177i
\(498\) −0.723339 0.159002i −0.0324136 0.00712503i
\(499\) 8.75534 + 15.1647i 0.391943 + 0.678865i 0.992706 0.120562i \(-0.0384698\pi\)
−0.600763 + 0.799427i \(0.705136\pi\)
\(500\) 19.3973 11.1240i 0.867475 0.497481i
\(501\) 59.0600 2.63861
\(502\) −10.0184 31.5768i −0.447141 1.40934i
\(503\) −29.2355 + 7.83362i −1.30354 + 0.349284i −0.842789 0.538243i \(-0.819088\pi\)
−0.460755 + 0.887527i \(0.652421\pi\)
\(504\) −15.7827 + 38.6895i −0.703016 + 1.72337i
\(505\) 4.46062 + 30.9186i 0.198495 + 1.37586i
\(506\) −24.7195 + 47.6941i −1.09892 + 2.12026i
\(507\) 2.79834 + 10.4436i 0.124279 + 0.463815i
\(508\) 0.457893 0.168519i 0.0203157 0.00747684i
\(509\) −26.2841 15.1752i −1.16502 0.672627i −0.212521 0.977156i \(-0.568167\pi\)
−0.952503 + 0.304529i \(0.901501\pi\)
\(510\) 1.87282 + 1.27219i 0.0829299 + 0.0563336i
\(511\) −0.307965 + 0.177804i −0.0136236 + 0.00786558i
\(512\) −21.0419 8.32103i −0.929928 0.367741i
\(513\) −7.56250 17.2453i −0.333893 0.761398i
\(514\) 6.10495 + 3.16415i 0.269278 + 0.139565i
\(515\) −1.17212 0.139571i −0.0516496 0.00615024i
\(516\) 30.0462 65.0416i 1.32271 2.86330i
\(517\) 47.2903 12.6714i 2.07982 0.557287i
\(518\) −8.36845 7.64074i −0.367689 0.335715i
\(519\) 4.41836 7.65283i 0.193945 0.335922i
\(520\) 18.3082 5.25578i 0.802869 0.230481i
\(521\) −33.4628 −1.46603 −0.733016 0.680211i \(-0.761888\pi\)
−0.733016 + 0.680211i \(0.761888\pi\)
\(522\) 5.29194 24.0744i 0.231622 1.05371i
\(523\) 30.2857 8.11502i 1.32430 0.354845i 0.473712 0.880680i \(-0.342914\pi\)
0.850587 + 0.525835i \(0.176247\pi\)
\(524\) −6.47389 9.17555i −0.282813 0.400836i
\(525\) 42.6565 12.5697i 1.86168 0.548587i
\(526\) 8.59325 5.49617i 0.374684 0.239644i
\(527\) −0.893864 0.239510i −0.0389373 0.0104332i
\(528\) −55.9917 4.49465i −2.43673 0.195605i
\(529\) 28.0492 16.1942i 1.21953 0.704097i
\(530\) 4.57508 + 23.9561i 0.198729 + 1.04059i
\(531\) 6.86502i 0.297917i
\(532\) 24.6750 13.6123i 1.06980 0.590169i
\(533\) −2.82868 + 2.82868i −0.122524 + 0.122524i
\(534\) 37.0078 1.68221i 1.60148 0.0727964i
\(535\) −3.33175 + 27.9800i −0.144044 + 1.20968i
\(536\) −9.45852 3.85843i −0.408546 0.166659i
\(537\) −8.34605 + 31.1479i −0.360159 + 1.34413i
\(538\) −1.99098 0.437650i −0.0858372 0.0188684i
\(539\) −17.6054 −0.758316
\(540\) 19.3124 + 0.534499i 0.831073 + 0.0230012i
\(541\) 0.439348 0.760973i 0.0188890 0.0327168i −0.856426 0.516269i \(-0.827320\pi\)
0.875315 + 0.483552i \(0.160654\pi\)
\(542\) −36.7652 8.08159i −1.57920 0.347134i
\(543\) −13.7692 13.7692i −0.590895 0.590895i
\(544\) −1.07633 + 1.00415i −0.0461471 + 0.0430527i
\(545\) −10.8769 + 27.2072i −0.465915 + 1.16543i
\(546\) 37.8421 1.72014i 1.61949 0.0736151i
\(547\) 10.2205 + 38.1436i 0.436999 + 1.63090i 0.736237 + 0.676723i \(0.236601\pi\)
−0.299239 + 0.954178i \(0.596733\pi\)
\(548\) 1.55080 + 4.21376i 0.0662469 + 0.180003i
\(549\) 6.37967 3.68330i 0.272278 0.157199i
\(550\) 20.1927 + 29.9128i 0.861020 + 1.27548i
\(551\) −12.9777 + 10.3892i −0.552870 + 0.442595i
\(552\) 46.1375 + 35.0102i 1.96374 + 1.49014i
\(553\) −36.6073 9.80889i −1.55670 0.417116i
\(554\) −0.0505191 1.11139i −0.00214635 0.0472186i
\(555\) −5.66116 + 14.1607i −0.240303 + 0.601086i
\(556\) 5.24933 + 2.42495i 0.222621 + 0.102841i
\(557\) −15.2422 + 4.08414i −0.645834 + 0.173051i −0.566845 0.823825i \(-0.691836\pi\)
−0.0789894 + 0.996875i \(0.525169\pi\)
\(558\) −21.9084 + 6.95085i −0.927455 + 0.294253i
\(559\) −39.2125 −1.65851
\(560\) 1.82548 + 28.8551i 0.0771405 + 1.21935i
\(561\) −1.82710 + 3.16464i −0.0771404 + 0.133611i
\(562\) 6.93042 2.19881i 0.292342 0.0927511i
\(563\) 23.0075 + 23.0075i 0.969652 + 0.969652i 0.999553 0.0299005i \(-0.00951904\pi\)
−0.0299005 + 0.999553i \(0.509519\pi\)
\(564\) −4.78878 52.5664i −0.201644 2.21345i
\(565\) 3.69419 31.0237i 0.155416 1.30518i
\(566\) 6.32110 4.04292i 0.265696 0.169937i
\(567\) −5.69620 1.52629i −0.239218 0.0640982i
\(568\) 2.42761 19.2378i 0.101860 0.807200i
\(569\) 13.2420i 0.555134i 0.960706 + 0.277567i \(0.0895280\pi\)
−0.960706 + 0.277567i \(0.910472\pi\)
\(570\) −28.8346 24.6352i −1.20775 1.03185i
\(571\) 22.6895i 0.949525i 0.880114 + 0.474762i \(0.157466\pi\)
−0.880114 + 0.474762i \(0.842534\pi\)
\(572\) 10.6182 + 28.8513i 0.443970 + 1.20633i
\(573\) −14.9103 3.99521i −0.622888 0.166902i
\(574\) −3.27176 5.11539i −0.136561 0.213512i
\(575\) −0.921379 37.2003i −0.0384241 1.55136i
\(576\) −9.08262 + 35.4149i −0.378443 + 1.47562i
\(577\) −5.71877 5.71877i −0.238076 0.238076i 0.577977 0.816053i \(-0.303842\pi\)
−0.816053 + 0.577977i \(0.803842\pi\)
\(578\) −7.24156 22.8246i −0.301209 0.949380i
\(579\) −14.3669 + 24.8843i −0.597070 + 1.03416i
\(580\) −3.95690 16.5905i −0.164302 0.688884i
\(581\) −0.615271 −0.0255257
\(582\) 5.87426 + 18.5151i 0.243496 + 0.767474i
\(583\) −38.0229 + 10.1882i −1.57475 + 0.421952i
\(584\) −0.245831 + 0.190740i −0.0101726 + 0.00789290i
\(585\) −12.1290 28.2862i −0.501472 1.16949i
\(586\) −4.24210 + 0.192828i −0.175240 + 0.00796563i
\(587\) 32.9503 + 8.82899i 1.36000 + 0.364412i 0.863817 0.503805i \(-0.168067\pi\)
0.496185 + 0.868217i \(0.334734\pi\)
\(588\) −3.22904 + 18.7043i −0.133163 + 0.771354i
\(589\) 14.4404 + 5.63626i 0.595006 + 0.232238i
\(590\) 2.06834 + 4.27627i 0.0851522 + 0.176051i
\(591\) −19.7303 + 11.3913i −0.811597 + 0.468576i
\(592\) −8.16262 5.62880i −0.335482 0.231342i
\(593\) −8.46448 31.5899i −0.347595 1.29724i −0.889552 0.456835i \(-0.848983\pi\)
0.541957 0.840406i \(-0.317684\pi\)
\(594\) 1.41595 + 31.1502i 0.0580973 + 1.27811i
\(595\) 1.74650 + 0.698217i 0.0715994 + 0.0286241i
\(596\) 23.7943 + 33.7241i 0.974655 + 1.38139i
\(597\) −1.21765 1.21765i −0.0498352 0.0498352i
\(598\) 6.80534 30.9592i 0.278291 1.26602i
\(599\) 0.557765 0.966078i 0.0227897 0.0394729i −0.854406 0.519607i \(-0.826079\pi\)
0.877195 + 0.480134i \(0.159412\pi\)
\(600\) 35.4836 15.9668i 1.44861 0.651843i
\(601\) 24.3381 0.992773 0.496387 0.868102i \(-0.334660\pi\)
0.496387 + 0.868102i \(0.334660\pi\)
\(602\) 12.7786 58.1333i 0.520819 2.36934i
\(603\) −4.27197 + 15.9432i −0.173968 + 0.649258i
\(604\) −18.8517 + 1.71738i −0.767063 + 0.0698791i
\(605\) −26.4435 + 20.8160i −1.07508 + 0.846292i
\(606\) 2.46840 + 54.3034i 0.100272 + 2.20592i
\(607\) 23.4537 23.4537i 0.951958 0.951958i −0.0469396 0.998898i \(-0.514947\pi\)
0.998898 + 0.0469396i \(0.0149468\pi\)
\(608\) 19.7720 14.7332i 0.801861 0.597511i
\(609\) 33.9199i 1.37451i
\(610\) 2.86421 4.21647i 0.115969 0.170720i
\(611\) −25.0187 + 14.4445i −1.01215 + 0.584363i
\(612\) 1.82746 + 1.52230i 0.0738707 + 0.0615353i
\(613\) 28.4803 + 7.63126i 1.15031 + 0.308224i 0.783088 0.621911i \(-0.213643\pi\)
0.367219 + 0.930135i \(0.380310\pi\)
\(614\) −2.75427 4.30630i −0.111153 0.173788i
\(615\) −4.89409 + 6.54430i −0.197349 + 0.263892i
\(616\) −46.2330 + 6.33960i −1.86278 + 0.255430i
\(617\) 20.9433 5.61174i 0.843145 0.225920i 0.188705 0.982034i \(-0.439571\pi\)
0.654440 + 0.756114i \(0.272904\pi\)
\(618\) −2.00615 0.440984i −0.0806991 0.0177390i
\(619\) −32.9278 −1.32348 −0.661740 0.749733i \(-0.730182\pi\)
−0.661740 + 0.749733i \(0.730182\pi\)
\(620\) −11.5527 + 10.9304i −0.463967 + 0.438977i
\(621\) 16.0756 27.8437i 0.645091 1.11733i
\(622\) 11.1673 12.2308i 0.447766 0.490411i
\(623\) 29.7278 7.96554i 1.19102 0.319133i
\(624\) 32.5998 5.98936i 1.30504 0.239766i
\(625\) −22.2429 11.4128i −0.889716 0.456514i
\(626\) 11.8110 22.7883i 0.472064 0.910805i
\(627\) 36.2566 49.3189i 1.44795 1.96961i
\(628\) −18.0524 3.11649i −0.720371 0.124362i
\(629\) −0.558609 + 0.322513i −0.0222732 + 0.0128594i
\(630\) 45.8875 8.76350i 1.82820 0.349146i
\(631\) −5.63437 3.25300i −0.224301 0.129500i 0.383639 0.923483i \(-0.374671\pi\)
−0.607940 + 0.793983i \(0.708004\pi\)
\(632\) −32.8998 4.15161i −1.30868 0.165142i
\(633\) −4.60519 17.1868i −0.183040 0.683114i
\(634\) 36.8734 + 19.1112i 1.46443 + 0.759002i
\(635\) −0.436861 0.326702i −0.0173363 0.0129648i
\(636\) 3.85033 + 42.2650i 0.152675 + 1.67592i
\(637\) 10.0345 2.68872i 0.397580 0.106531i
\(638\) 26.2394 8.32495i 1.03883 0.329588i
\(639\) −31.3307 −1.23942
\(640\) 5.01241 + 24.7967i 0.198133 + 0.980175i
\(641\) 16.6823 + 28.8946i 0.658910 + 1.14127i 0.980898 + 0.194522i \(0.0623157\pi\)
−0.321988 + 0.946744i \(0.604351\pi\)
\(642\) −10.5269 + 47.8894i −0.415463 + 1.89005i
\(643\) 1.27176 4.74629i 0.0501535 0.187175i −0.936305 0.351189i \(-0.885777\pi\)
0.986458 + 0.164014i \(0.0524441\pi\)
\(644\) 43.6800 + 20.1781i 1.72123 + 0.795129i
\(645\) −79.2821 + 11.4380i −3.12173 + 0.450372i
\(646\) −0.313801 1.57309i −0.0123463 0.0618923i
\(647\) 23.7513 23.7513i 0.933760 0.933760i −0.0641788 0.997938i \(-0.520443\pi\)
0.997938 + 0.0641788i \(0.0204428\pi\)
\(648\) −5.11930 0.646003i −0.201105 0.0253774i
\(649\) −6.63974 + 3.83345i −0.260632 + 0.150476i
\(650\) −16.0775 13.9654i −0.630611 0.547768i
\(651\) −27.3918 + 15.8146i −1.07357 + 0.619825i
\(652\) 11.7104 14.0578i 0.458613 0.550547i
\(653\) 31.1510 31.1510i 1.21903 1.21903i 0.251063 0.967971i \(-0.419220\pi\)
0.967971 0.251063i \(-0.0807800\pi\)
\(654\) −23.4622 + 45.2683i −0.917445 + 1.77013i
\(655\) −4.66060 + 11.6579i −0.182105 + 0.455511i
\(656\) −3.44426 4.04548i −0.134476 0.157950i
\(657\) 0.355500 + 0.355500i 0.0138694 + 0.0138694i
\(658\) −13.2612 41.7979i −0.516975 1.62945i
\(659\) 2.53394 4.38892i 0.0987084 0.170968i −0.812442 0.583042i \(-0.801862\pi\)
0.911150 + 0.412074i \(0.135196\pi\)
\(660\) 29.8843 + 55.2361i 1.16324 + 2.15006i
\(661\) 15.2556 26.4235i 0.593375 1.02776i −0.400399 0.916341i \(-0.631129\pi\)
0.993774 0.111415i \(-0.0355382\pi\)
\(662\) −29.0412 + 31.8072i −1.12872 + 1.23622i
\(663\) 0.558078 2.08277i 0.0216739 0.0808883i
\(664\) −0.533362 + 0.0731362i −0.0206984 + 0.00283823i
\(665\) −27.7901 14.8459i −1.07765 0.575700i
\(666\) −7.37215 + 14.2239i −0.285665 + 0.551166i
\(667\) −27.4165 7.34623i −1.06157 0.284447i
\(668\) 40.2892 14.8277i 1.55884 0.573702i
\(669\) −21.0530 12.1550i −0.813956 0.469938i
\(670\) 2.14244 + 11.2182i 0.0827695 + 0.433398i
\(671\) 7.12486 + 4.11354i 0.275052 + 0.158801i
\(672\) −1.74434 + 50.2817i −0.0672893 + 1.93966i
\(673\) 23.1515 23.1515i 0.892424 0.892424i −0.102327 0.994751i \(-0.532629\pi\)
0.994751 + 0.102327i \(0.0326288\pi\)
\(674\) 12.3474 7.89730i 0.475604 0.304192i
\(675\) −11.2600 18.4332i −0.433396 0.709492i
\(676\) 4.53094 + 6.42176i 0.174267 + 0.246991i
\(677\) −22.2710 22.2710i −0.855943 0.855943i 0.134914 0.990857i \(-0.456924\pi\)
−0.990857 + 0.134914i \(0.956924\pi\)
\(678\) 11.6720 53.0990i 0.448261 2.03925i
\(679\) 8.06863 + 13.9753i 0.309646 + 0.536322i
\(680\) 1.59699 + 0.397662i 0.0612417 + 0.0152496i
\(681\) −36.4635 63.1566i −1.39728 2.42017i
\(682\) −18.9565 17.3080i −0.725881 0.662759i
\(683\) −7.68286 7.68286i −0.293976 0.293976i 0.544673 0.838649i \(-0.316654\pi\)
−0.838649 + 0.544673i \(0.816654\pi\)
\(684\) −27.6181 28.7156i −1.05600 1.09797i
\(685\) 3.00647 4.02021i 0.114871 0.153604i
\(686\) −0.737067 16.2151i −0.0281413 0.619094i
\(687\) −8.13054 2.17857i −0.310199 0.0831177i
\(688\) 4.16725 51.9131i 0.158875 1.97917i
\(689\) 20.1158 11.6139i 0.766351 0.442453i
\(690\) 4.72885 64.5803i 0.180024 2.45853i
\(691\) 29.4848i 1.12166i −0.827933 0.560828i \(-0.810483\pi\)
0.827933 0.560828i \(-0.189517\pi\)
\(692\) 1.09276 6.32984i 0.0415403 0.240624i
\(693\) 19.5154 + 72.8323i 0.741327 + 2.76667i
\(694\) 12.0391 + 18.8231i 0.456998 + 0.714516i
\(695\) −0.923132 6.39865i −0.0350164 0.242715i
\(696\) −4.03200 29.4043i −0.152833 1.11457i
\(697\) −0.333860 + 0.0894576i −0.0126459 + 0.00338845i
\(698\) 1.84692 2.02282i 0.0699069 0.0765649i
\(699\) 37.2752 64.5626i 1.40988 2.44198i
\(700\) 25.9433 19.2841i 0.980566 0.728872i
\(701\) −8.08475 14.0032i −0.305357 0.528893i 0.671984 0.740566i \(-0.265442\pi\)
−0.977341 + 0.211672i \(0.932109\pi\)
\(702\) −5.56437 17.5383i −0.210013 0.661941i
\(703\) 9.89523 4.33931i 0.373206 0.163660i
\(704\) −39.3245 + 10.9913i −1.48210 + 0.414249i
\(705\) −46.3709 + 36.5026i −1.74643 + 1.37477i
\(706\) −28.0235 + 1.27383i −1.05468 + 0.0479411i
\(707\) 11.6882 + 43.6211i 0.439582 + 1.64054i
\(708\) 2.85494 + 7.75731i 0.107295 + 0.291538i
\(709\) 2.56608 + 1.48153i 0.0963712 + 0.0556399i 0.547411 0.836864i \(-0.315613\pi\)
−0.451040 + 0.892504i \(0.648947\pi\)
\(710\) −19.5161 + 9.43951i −0.732426 + 0.354259i
\(711\) 53.5806i 2.00943i
\(712\) 24.8234 10.4388i 0.930295 0.391211i
\(713\) 6.85013 + 25.5650i 0.256540 + 0.957419i
\(714\) 2.90589 + 1.50610i 0.108750 + 0.0563644i
\(715\) 20.5851 27.5261i 0.769839 1.02942i
\(716\) 2.12659 + 23.3436i 0.0794746 + 0.872392i
\(717\) 17.3296 64.6751i 0.647187 2.41534i
\(718\) −4.41704 + 20.0943i −0.164843 + 0.749911i
\(719\) −18.9488 32.8202i −0.706669 1.22399i −0.966086 0.258222i \(-0.916863\pi\)
0.259416 0.965766i \(-0.416470\pi\)
\(720\) 38.7369 13.0514i 1.44364 0.486397i
\(721\) −1.70643 −0.0635507
\(722\) 2.32319 + 26.7694i 0.0864603 + 0.996255i
\(723\) −19.2351 19.2351i −0.715361 0.715361i
\(724\) −12.8499 5.93608i −0.477564 0.220613i
\(725\) −13.1458 + 13.8136i −0.488224 + 0.513023i
\(726\) −49.3340 + 31.5536i −1.83096 + 1.17106i
\(727\) −37.8856 10.1514i −1.40510 0.376495i −0.524927 0.851148i \(-0.675907\pi\)
−0.880173 + 0.474652i \(0.842574\pi\)
\(728\) 25.3830 10.6741i 0.940757 0.395610i
\(729\) 43.9956i 1.62947i
\(730\) 0.328551 + 0.114336i 0.0121602 + 0.00423178i
\(731\) −2.93412 1.69401i −0.108522 0.0626553i
\(732\) 5.67711 6.81515i 0.209832 0.251895i
\(733\) −16.9531 + 16.9531i −0.626177 + 0.626177i −0.947104 0.320927i \(-0.896006\pi\)
0.320927 + 0.947104i \(0.396006\pi\)
\(734\) 6.98831 13.4833i 0.257943 0.497679i
\(735\) 19.5040 8.36321i 0.719416 0.308482i
\(736\) 40.2635 + 12.2997i 1.48413 + 0.453373i
\(737\) −17.8055 + 4.77097i −0.655874 + 0.175741i
\(738\) −5.78846 + 6.33975i −0.213076 + 0.233370i
\(739\) 5.15752 + 8.93309i 0.189723 + 0.328609i 0.945158 0.326614i \(-0.105908\pi\)
−0.755435 + 0.655223i \(0.772574\pi\)
\(740\) −0.306692 + 11.0813i −0.0112742 + 0.407357i
\(741\) −13.1329 + 33.6473i −0.482450 + 1.23606i
\(742\) 10.6624 + 33.6068i 0.391429 + 1.23375i
\(743\) −5.87261 + 21.9169i −0.215445 + 0.804052i 0.770564 + 0.637362i \(0.219975\pi\)
−0.986009 + 0.166690i \(0.946692\pi\)
\(744\) −21.8653 + 16.9653i −0.801621 + 0.621978i
\(745\) 17.1297 42.8477i 0.627584 1.56982i
\(746\) 37.4385 1.70179i 1.37072 0.0623070i
\(747\) 0.225137 + 0.840222i 0.00823733 + 0.0307421i
\(748\) −0.451882 + 2.61755i −0.0165224 + 0.0957070i
\(749\) 40.7347i 1.48841i
\(750\) −36.5801 23.5464i −1.33571 0.859792i
\(751\) 2.73012 + 1.57624i 0.0996235 + 0.0575177i 0.548984 0.835833i \(-0.315015\pi\)
−0.449360 + 0.893351i \(0.648348\pi\)
\(752\) −16.4642 34.6571i −0.600388 1.26382i
\(753\) −45.5740 + 45.5740i −1.66081 + 1.66081i
\(754\) −13.6842 + 8.75228i −0.498348 + 0.318739i
\(755\) 13.0908 + 16.6298i 0.476422 + 0.605220i
\(756\) 27.8142 2.53387i 1.01159 0.0921558i
\(757\) 0.0297604 0.111067i 0.00108166 0.00403681i −0.965383 0.260837i \(-0.916002\pi\)
0.966465 + 0.256800i \(0.0826682\pi\)
\(758\) −9.86608 9.00814i −0.358352 0.327191i
\(759\) 104.513 3.79356
\(760\) −25.8551 9.56617i −0.937865 0.347002i
\(761\) 7.05600 0.255780 0.127890 0.991788i \(-0.459180\pi\)
0.127890 + 0.991788i \(0.459180\pi\)
\(762\) −0.701014 0.640055i −0.0253951 0.0231867i
\(763\) −10.9631 + 40.9150i −0.396893 + 1.48122i
\(764\) −11.1745 + 1.01799i −0.404279 + 0.0368296i
\(765\) 0.314424 2.64053i 0.0113680 0.0954685i
\(766\) −1.85344 + 1.18545i −0.0669676 + 0.0428319i
\(767\) 3.19897 3.19897i 0.115508 0.115508i
\(768\) 4.46478 + 43.7952i 0.161109 + 1.58032i