Properties

Label 375.1.d
Level $375$
Weight $1$
Character orbit 375.d
Rep. character $\chi_{375}(374,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $50$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 375.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(50\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(375, [\chi])\).

Total New Old
Modular forms 14 4 10
Cusp forms 4 4 0
Eisenstein series 10 0 10

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q + 2 q^{4} - 2 q^{6} + 4 q^{9} - 2 q^{19} - 4 q^{24} - 2 q^{31} - 4 q^{34} + 2 q^{36} - 4 q^{46} + 4 q^{49} - 2 q^{51} - 2 q^{54} - 2 q^{61} - 2 q^{64} - 2 q^{69} - 6 q^{76} - 2 q^{79} + 4 q^{81} + 6 q^{94}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(375, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
375.1.d.a 375.d 15.d $2$ $0.187$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-15}) \) None 375.1.c.a \(-1\) \(2\) \(0\) \(0\) \(q+(-1+\beta )q^{2}+q^{3}+(1-\beta )q^{4}+(-1+\cdots)q^{6}+\cdots\)
375.1.d.b 375.d 15.d $2$ $0.187$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-15}) \) None 375.1.c.a \(1\) \(-2\) \(0\) \(0\) \(q+(1-\beta )q^{2}-q^{3}+(1-\beta )q^{4}+(-1+\cdots)q^{6}+\cdots\)