Properties

Label 37479.2.a.g
Level $37479$
Weight $2$
Character orbit 37479.a
Self dual yes
Analytic conductor $299.271$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [37479,2,Mod(1,37479)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("37479.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(37479, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 37479 = 3 \cdot 13 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 37479.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,1,-1,2,1,-4,-3,1,2,-4,-1,-1,-4,2,-1,-2,1,0,-2,-4,-4,0,-3, -1,-1,1,4,10,2,0,5,-4,-2,-8,-1,2,0,-1,-6,6,-4,12,4,2,0,0,-1,9,-1,-2,1, -6,1,-8,12,0,10,12,-2,2,0,-4,7,-2,-4,-8,2,0,-8,0,-3,-2,2,-1,0,16,-1,-8, -2,1,6,-4,4,-4,12,10,12,2,2,4,0,0,0,0,5,10,9,-4,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(299.271321736\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{3} - q^{4} + 2 q^{5} + q^{6} - 4 q^{7} - 3 q^{8} + q^{9} + 2 q^{10} - 4 q^{11} - q^{12} - q^{13} - 4 q^{14} + 2 q^{15} - q^{16} - 2 q^{17} + q^{18} - 2 q^{20} - 4 q^{21} - 4 q^{22}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(13\) \( +1 \)
\(31\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.